scholarly journals Simultaneous Enzymatic Cellulose Hydrolysis and Product Separation in a Radial-Flow Membrane Bioreactor

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 288
Author(s):  
Saleha Al-Mardeai ◽  
Emad Elnajjar ◽  
Raed Hashaikeh ◽  
Boguslaw Kruczek ◽  
Bart Van der Bruggen ◽  
...  

Hydrolysis is the heart of the lignocellulose-to-bioethanol conversion process. Using enzymes to catalyze the hydrolysis represents a more environmentally friendly pathway compared to other techniques. However, for the process to be economically feasible, solving the product inhibition problem and enhancing enzyme reusability are essential. Prior research demonstrated that a flat-sheet membrane bioreactor (MBR), using an inverted dead-end filtration system, could achieve 86.7% glucose yield from purified cellulose in 6 h. In this study, the effectiveness of flat-sheet versus radial-flow MBR designs was assessed using real, complex lignocellulose biomass, namely date seeds (DSs). The tubular radial-flow MBR used here had more than a 10-fold higher membrane surface area than the flat-sheet MBR design. With simultaneous product separation using the flat-sheet inverted dead-end filtration MBR, a glucose yield of 10.8% from pretreated DSs was achieved within 8 h of reaction, which was three times higher than the yield without product separation, which was only 3.5% within the same time and under the same conditions. The superiority of the tubular radial-flow MBR to hydrolyze pretreated DSs was confirmed with a glucose yield of 60% within 8 h. The promising results obtained by the novel tubular MBR could pave the way for an economic lignocellulose-to-bioethanol process.

2008 ◽  
Vol 57 (12) ◽  
pp. 1873-1879 ◽  
Author(s):  
G. Guglielmi ◽  
D. Chiarani ◽  
D. P. Saroj ◽  
G. Andreottola

The paper discusses the experimental optimisation of both chemical and mechanical cleaning procedures for a flat-sheet submerged membrane bioreactor fed with municipal wastewater. Fouling was evaluated by means of the critical flux concept, which was experimentally measured by short-term flux-stepping tests. By keeping constant most important parameters of the biological process (MLSS, sludge age), two different chemical cleaning protocols (2,000 mg L−1 NaOCl and 200 mg L−1 NaOCl) were applied with different frequency and, after approximately 9 months of operation, the criticality threshold was determined under different values of SADm (specific aeration demand per unit of membrane surface area). The weaker and more frequent chemical cleaning regime (200 mg L−1, monthly) proved much more effective than the stronger and less frequent strategy (2,000 mg L−1, once every three months). The improvement of performances was quantified by two TMP-based parameters, the fouling rate and the ΔTMP (difference between TMP values during the increasing and decreasing phase of hysteresis). The best performing configuration was then checked over a longer period by running four long-term trials showing an exponential trend of the sub-critical fouling rate with the imposed flux.


2015 ◽  
Vol 192 ◽  
pp. 177-184 ◽  
Author(s):  
Majid Hosseinzadeh ◽  
Gholamreza Nabi Bidhendi ◽  
Ali Torabian ◽  
Naser Mehrdadi ◽  
Mehdi Pourabdullah

Sign in / Sign up

Export Citation Format

Share Document