scholarly journals Comparability of CMV DNA Extraction Methods and Validation of Viral Load

2022 ◽  
Vol 5 (1) ◽  
pp. 6
Author(s):  
Théophile Uwiringiyeyezu ◽  
Bouchra El Khalfi ◽  
Rachid Saile ◽  
Jamal Belhachmi ◽  
Abdelaziz Soukri

Human cytomegalovirus is a herpesvirus that has a worldwide seroprevalence of more than 60% of adults in developed countries and 90% in developing countries. Severe disabilities in newborns are characteristic of the human cytomegalovirus congenital infection, and this virus is implicated in graft rejection in transplant patients. To treat and follow-up the infection, the CMVPCR viral loads are required, and the DNA extraction step remains very important; however, the quantity, quality, and purity of extracted DNA from different biological fluids influence the results of PCR amplification, that is why for reliable results, the choice of nucleic acid extraction methods requires careful attention. Materials and methods: In this study, we compare 4 protocols, I (EZ1 DSP Virus kit), II (EZ1 Virus mini kit), III (QIAamp DSP virus kit), and IV (heating); the extractions are made from plasma collected on EDTA tubes, and the concentration of extracted DNA was measured on NanoDrop Lite followed by real-time CMVPCR using an Artus CMV QS-RGQ kit. All protocols are performed following the manufacturer’s instructions. Results: This study is conducted on the samples of 135 transplant patients whose follow-up medical tests related to human cytomegalovirus infection; since most of the CMVPCR results are negative, we have chosen the 10 CMVPCR positive samples and 2 negative samples as controls to conduct this comparison study. By using NanoDrop Lite to evaluate the DNA concentration, the yield of extracted DNA is higher in our heating protocol than other protocols, the EZ1 DSP virus kit and EZ1 Virus mini kit show homogeneous quantities, and the QIAamp DSP virus kit shows very low DNA yields. Comparing cycle threshold and viral loads by real-time PCR, all these protocols identified negative samples (100%), and the previously positive samples used were as follows: protocol IV (90%), protocol II (60%), and protocol I (40%). QIAamp DSP virus kit results were not real-time PCR applicable and were non-conclusive because of the low DNA yields. Conclusion: Our developed heating method (protocol IV) is very effective, reliable, simple, fast, and cheap compared to the other protocols in our study.

Author(s):  
Eun-Sook Lee ◽  
So-Yang Cha ◽  
Jong-Soon Jung

Abstract DNA extraction methods were evaluated to reduce PCR inhibitors and quantify Helicobacter pylori directly from water samples using real-time PCR. Three nucleic acid extraction methods were evaluated for different types of water samples. While the QIAamp DNA mini kit for tissue was suitable for DNA extraction from treated water, the QIAamp DNA stool mini kit was still efficient in analyzing samples from river water after heavy rain and with high concentration of PCR inhibitors. The FastDNA SPIN Kit for Soil could extract DNA effectively from microbes in river and stream waters without heavy rain. Immunomagnetic separation (IMS) was used prior to DNA extraction and was a useful tool for reducing PCR inhibitors in influent and stream samples. H. pylori in various waters could be quantified directly by real-time PCR while minimizing the effect of PCR inhibitors by an appropriate method through the evaluation of DNA extraction methods considering the characteristics of the matrix water. The findings of the present study suggest that the types or characteristics of water sample by source and precipitation are an important factor in detecting H. pylori and they can be applied when detecting and monitoring of other pathogens in water.


Food Control ◽  
2012 ◽  
Vol 25 (2) ◽  
pp. 666-672 ◽  
Author(s):  
Alicia Rodríguez ◽  
Mar Rodríguez ◽  
M. Isabel Luque ◽  
Annemarie F. Justesen ◽  
Juan J. Córdoba

2006 ◽  
Vol 55 (9) ◽  
pp. 1187-1191 ◽  
Author(s):  
Lisa J. Griffiths ◽  
Martin Anyim ◽  
Sarah R. Doffman ◽  
Mark Wilks ◽  
Michael R. Millar ◽  
...  

Newer methods such as PCR are being investigated in order to improve the diagnosis of invasive aspergillosis. One of the major obstacles to using PCR to diagnose aspergillosis is a reliable, simple method for extraction of the fungal DNA. The presence of a complex, sturdy cell wall that is resistant to lysis impairs extraction of the DNA by conventional methods employed for bacteria. Numerous fungal DNA extraction protocols have been described in the literature. However, these methods are time-consuming, require a high level of skill and may not be suitable for use as a routine diagnostic technique. Here, a number of extraction methods were compared: a freeze–thaw method, a freeze–boil method, enzyme extraction and a bead-beating method using Mini-BeadBeater-8. The quality and quantity of the DNA extracted was compared using real-time PCR. It was found that the use of a bead-beating method followed by extraction with AL buffer (Qiagen) was the most successful extraction technique, giving the greatest yield of DNA, and was also the least time-consuming method assessed.


2017 ◽  
Vol 140 ◽  
pp. 61-66 ◽  
Author(s):  
Libera M. Dalla-Costa ◽  
Luis G. Morello ◽  
Danieli Conte ◽  
Luciane A. Pereira ◽  
Jussara K. Palmeiro ◽  
...  

2014 ◽  
Vol 53 (1) ◽  
pp. 118-123 ◽  
Author(s):  
Margaret M. Williams ◽  
Thomas H. Taylor ◽  
David M. Warshauer ◽  
Monte D. Martin ◽  
Ann M. Valley ◽  
...  

Real-time PCR (rt-PCR) is an important diagnostic tool for the identification ofBordetella pertussis,Bordetella holmesii, andBordetella parapertussis. Most U.S. public health laboratories (USPHLs) target IS481, present in 218 to 238 copies in theB. pertussisgenome and 32 to 65 copies inB. holmesii. The CDC developed a multitarget PCR assay to differentiateB. pertussis,B. holmesii, andB. parapertussisand provided protocols and training to 19 USPHLs. The 2012 performance exercise (PE) assessed the capability of USPHLs to detect these threeBordetellaspecies in clinical samples. Laboratories were recruited by the Wisconsin State Proficiency Testing program through the Association of Public Health Laboratories, in partnership with the CDC. Spring and fall PE panels contained 12 samples each of viableBordetellaand non-Bordetellaspecies in saline. Fifty and 53 USPHLs participated in the spring and fall PEs, respectively, using a variety of nucleic acid extraction methods, PCR platforms, and assays. Ninety-six percent and 94% of laboratories targeted IS481in spring and fall, respectively, in either singleplex or multiplex assays. In spring and fall, respectively, 72% and 79% of USPHLs differentiatedB. pertussisandB. holmesiiand 68% and 72% identifiedB. parapertussis. IS481cycle threshold (CT) values forB. pertussissamples had coefficients of variation (CV) ranging from 10% to 28%. Of the USPHLs that differentiatedB. pertussisandB. holmesii, sensitivity was 96% and specificity was 95% for the combined panels. The 2012 PE demonstrated increased harmonization of rt-PCRBordetelladiagnostic protocols in USPHLs compared to that of the previous survey.


2013 ◽  
Vol 103 (6) ◽  
pp. 633-640 ◽  
Author(s):  
Kameka L. Johnson ◽  
Desen Zheng ◽  
Supaporn Kaewnum ◽  
Cheryl Lynn Reid ◽  
Thomas Burr

Agrobacterium vitis, the causal agent of grape crown gall, can have severe economic effects on grape production. The bacterium survives systemically in vines and, therefore, is disseminated in propagation material. We developed an assay for use in indexing programs that is efficient and sensitive for detecting A. vitis in grape tissue. Initially, real-time polymerase chain reaction (PCR) primers specific for diverse tumorigenic strains of A. vitis were developed using the virD2 gene sequence. To overcome the effects of PCR inhibitors present in plant tissue, DNA extraction methods that included magnetic capture hybridization (MCH), immunomagnetic separation (IMS), and extraction with the Mo Bio Powerfood kit were compared. The assays incorporating MCH or IMS followed by real-time PCR were 10,000-fold more sensitive than direct real-time PCR when tested using boiled bacterial cell suspensions, with detection thresholds of 101 CFU/ml compared with 105 CFU/ml. DNA extraction with the Powerfood DNA extraction kit was 10-fold more sensitive than direct real-time PCR, with a detection threshold of 104 CFU/ml. All three assays were able to detect A. vitis in healthy-appearing grapevine cuttings taken from infected vines.


Sign in / Sign up

Export Citation Format

Share Document