scholarly journals Application of Nanomaterials in Biomedical Imaging and Cancer Therapy

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1700 ◽  
Author(s):  
Sarkar Siddique ◽  
James C. L. Chow

Nanomaterials, such as nanoparticles, nanorods, nanosphere, nanoshells, and nanostars, are very commonly used in biomedical imaging and cancer therapy. They make excellent drug carriers, imaging contrast agents, photothermal agents, photoacoustic agents, and radiation dose enhancers, among other applications. Recent advances in nanotechnology have led to the use of nanomaterials in many areas of functional imaging, cancer therapy, and synergistic combinational platforms. This review will systematically explore various applications of nanomaterials in biomedical imaging and cancer therapy. The medical imaging modalities include magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computerized tomography, optical imaging, ultrasound, and photoacoustic imaging. Various cancer therapeutic methods will also be included, including photothermal therapy, photodynamic therapy, chemotherapy, and immunotherapy. This review also covers theranostics, which use the same agent in diagnosis and therapy. This includes recent advances in multimodality imaging, image-guided therapy, and combination therapy. We found that the continuous advances of synthesis and design of novel nanomaterials will enhance the future development of medical imaging and cancer therapy. However, more resources should be available to examine side effects and cell toxicity when using nanomaterials in humans.

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5576
Author(s):  
Yurii Shepelytskyi ◽  
Camryn J. Newman ◽  
Vira Grynko ◽  
Lauren E. Seveney ◽  
Brenton DeBoef ◽  
...  

Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides consisting of multiple glucose subunits. CDs are widely used in host–guest chemistry and biochemistry due to their structural advantages, biocompatibility, and ability to form inclusion complexes. Recently, CDs have become of high interest in the field of medical imaging as a potential scaffold for the development of a large variety of the contrast agents suitable for magnetic resonance imaging, ultrasound imaging, photoacoustic imaging, positron emission tomography, single photon emission computed tomography, and computed tomography. The aim of this review is to summarize and highlight the achievements in the field of cyclodextrin-based contrast agents for medical imaging.


2011 ◽  
Vol 1 ◽  
pp. 24 ◽  
Author(s):  
Keerthi S Valluru ◽  
Bhargava K Chinni ◽  
Navalgund A Rao

In today's world, technology is advancing at an exponential rate and medical imaging is no exception. During the last hundred years, the field of medical imaging has seen a tremendous technological growth with the invention of imaging modalities including but not limited to X-ray, ultrasound, computed tomography, magnetic resonance imaging, positron emission tomography, and single-photon emission computed tomography. These tools have led to better diagnosis and improved patient care. However, each of these modalities has its advantages as well as disadvantages and none of them can reveal all the information a physician would like to have. In the last decade, a new diagnostic technology called photoacoustic imaging has evolved which is moving rapidly from the research phase to the clinical trial phase. This article outlines the basics of photoacoustic imaging and describes our hands-on experience in developing a comprehensive photoacoustic imaging system to detect tissue abnormalities.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1642
Author(s):  
Maria Filomena Santarelli ◽  
Giulio Giovannetti ◽  
Valentina Hartwig ◽  
Simona Celi ◽  
Vincenzo Positano ◽  
...  

In this review, the roles of detectors in various medical imaging techniques were described. Ultrasound, optical (near-infrared spectroscopy and optical coherence tomography) and thermal imaging, magnetic resonance imaging, computed tomography, single-photon emission tomography, positron emission tomography were the imaging modalities considered. For each methodology, the state of the art of detectors mainly used in the systems was described, emphasizing new technologies applied.


2010 ◽  
Vol 6 (1) ◽  
pp. 32
Author(s):  
W Kevin Tsai ◽  
Kathleen M Holohan ◽  
Kim Allan Williams ◽  
◽  
◽  
...  

This article highlights recent advances in myocardial perfusion imaging in echocardiography, single-photon-emission computed tomography, positron-emission tomography, cardiac computed tomography and cardiac magnetic resonance imaging. The future of non-invasive cardiac imaging is trending towards comprehensive studies combining different modalities to evaluate both cardiac anatomy and its functional status.


2002 ◽  
Vol 41 (06) ◽  
pp. 233-239 ◽  
Author(s):  
C. Hausteiner ◽  
A. Drzezga ◽  
P. Bartenstein ◽  
M. Schwaiger ◽  
H. Förstl ◽  
...  

SummaryAim: Multiple chemical sensitivity (MCS) is a controversially discussed symptom complex. Patients afflicted by MCS react to very low and generally nontoxic concentrations of environmental chemicals. It has been suggested that MCS leads to neurotoxic damage or neuroimmunological alteration in the brain detectable by positron emission tomography (PET) and single photon emission computer tomography (SPECT). These methods are often applied to MCS patients for diagnosis, although they never proved appropriate. Method: We scanned 12 MCS patients with PET, hypothesizing that it would reveal abnormal findings. Results: Mild glucose hypometabolism was present in one patient. In comparison with normal controls, the patient group showed no significant functional brain changes. Conclusion: This first systematic PET study in MCS patients revealed no hint of neurotoxic or neuroimmuno-logical brain changes of functional significance.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Aninka Saboe ◽  
Ferdy Sanjaya ◽  
Raden Erwin Affandi Soeriadi ◽  
Euis Maryani ◽  
Nuraini Yasmin Kusumawardhani ◽  
...  

Abstract Background Pericardial hematoma is blood accumulation in the pericardial space. Although rare, it could arise in various conditions, such as after cardiac surgery. Clinical diagnosis of pericardial hematoma is implausible; thus, cardiac imaging plays a pivotal role in identifying this condition. We presented a case of multiple pericardial hematomas, which was found as an incidental finding in post-cardiac surgery evaluation. We highlighted the diagnostic challenge and the key features of multi-modality cardiac imaging in pericardial hematoma evaluation. Case presentation An asymptomatic, 35-years old male, who underwent surgical closure of secundum atrial septal defect (ASD) one month ago, came for routine transthoracic echocardiography evaluation. An intrapericardiac hematoma was visualized at the right ventricle (RV) 's free wall side. Another mass with an indistinct border was visualized near the right atrium (RA). This mass was suspected as pericardial hematoma differential diagnosed with intracardiac thrombus. Cardiac computed tomography (CT) scan showed both masses have an attenuation of 30–40 HU; however, the mass's border at the RA side was still not clearly delineated. Mild superior vena cava (SVC) compression and multiple mediastinal lymphadenopathies were also detected. These findings are not typical for pericardial hematomas nor intracardiac thrombus; hence another additional differential diagnosis of pericardial neoplasm was considered. We pursued further cardiac imaging modalities because the patient refused to undergo an open biopsy. Single-photon emission computer tomography (SPECT)/CT with Technetium-99 m (Tc-99 m) macro-aggregated albumin (MAA) and Sestamibi showed filling defect without increased radioactivity, thus exclude the intracardiac thrombus. Cardiac magnetic resonance imaging (MRI) reveals intrapericardial masses with low intensity of T1 signal and heterogeneously high intensity on T2 signal weighted imaged and no evidence of gadolinium enhancement, which concluded the diagnosis as subacute pericardial hematomas. During follow-up, the patient remains asymptomatic, and after six months, the pericardial hematomas were resolved. Conclusion Pericardial hematoma should be considered as a cause of pericardial masses after cardiac surgery. When imaging findings are atypical, further multi-modality cardiac imaging must be pursued to establish the diagnosis. Careful and meticulous follow-up should be considered for an asymptomatic patient with stable hemodynamic.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Natalie A. Bebbington ◽  
Bryan T. Haddock ◽  
Henrik Bertilsson ◽  
Eero Hippeläinen ◽  
Ellen M. Husby ◽  
...  

Abstract Background Computed tomography (CT) scans are routinely performed in positron emission tomography (PET) and single photon emission computed tomography (SPECT) examinations globally, yet few surveys have been conducted to gather national diagnostic reference level (NDRL) data for CT radiation doses in positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography/computed tomography (SPECT/CT). In this first Nordic-wide study of CT doses in hybrid imaging, Nordic NDRL CT doses are suggested for PET/CT and SPECT/CT examinations specific to the clinical purpose of CT, and the scope for optimisation is evaluated. Data on hybrid imaging CT exposures and clinical purpose of CT were gathered for 5 PET/CT and 8 SPECT/CT examinations via designed booklet. For each included dataset for a given facility and scanner type, the computed tomography dose index by volume (CTDIvol) and dose length product (DLP) was interpolated for a 75-kg person (referred to as CTDIvol,75kg and DLP75kg). Suggested NDRL (75th percentile) and achievable doses (50th percentile) were determined for CTDIvol,75kg and DLP75kg according to clinical purpose of CT. Differences in maximum and minimum doses (derived for a 75-kg patient) between facilities were also calculated for each examination and clinical purpose. Results Data were processed from 83 scanners from 43 facilities. Data were sufficient to suggest Nordic NDRL CT doses for the following: PET/CT oncology (localisation/characterisation, 15 systems); infection/inflammation (localisation/characterisation, 13 systems); brain (attenuation correction (AC) only, 11 systems); cardiac PET/CT and SPECT/CT (AC only, 30 systems); SPECT/CT lung (localisation/characterisation, 12 systems); bone (localisation/characterisation, 30 systems); and parathyroid (localisation/characterisation, 13 systems). Great variations in dose were seen for all aforementioned examinations. Greatest differences in DLP75kg for each examination, specific to clinical purpose, were as follows: SPECT/CT lung AC only (27.4); PET/CT and SPECT/CT cardiac AC only (19.6); infection/inflammation AC only (18.1); PET/CT brain localisation/characterisation (16.8); SPECT/CT bone localisation/characterisation (10.0); PET/CT oncology AC only (9.0); and SPECT/CT parathyroid localisation/characterisation (7.8). Conclusions Suggested Nordic NDRL CT doses are presented according to clinical purpose of CT for PET/CT oncology, infection/inflammation, brain, PET/CT and SPECT/CT cardiac, and SPECT/CT lung, bone, and parathyroid. The large variation in doses suggests great scope for optimisation in all 8 examinations.


Sign in / Sign up

Export Citation Format

Share Document