scholarly journals Photonic–Plasmonic Nanostructures for Solar Energy Utilization and Emerging Biosensors

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2248
Author(s):  
Van Tan Tran ◽  
Huu-Quang Nguyen ◽  
Young-Mi Kim ◽  
Gyeongsik Ok ◽  
Jaebeom Lee

Issues related to global energy and environment as well as health crisis are currently some of the greatest challenges faced by humanity, which compel us to develop new pollution-free and sustainable energy sources, as well as next-generation biodiagnostic solutions. Optical functional nanostructures that manipulate and confine light on a nanometer scale have recently emerged as leading candidates for a wide range of applications in solar energy conversion and biosensing. In this review, recent research progress in the development of photonic and plasmonic nanostructures for various applications in solar energy conversion, such as photovoltaics, photothermal conversion, and photocatalysis, is highlighted. Furthermore, the combination of photonic and plasmonic nanostructures for developing high-efficiency solar energy conversion systems is explored and discussed. We also discuss recent applications of photonic–plasmonic-based biosensors in the rapid management of infectious diseases at point-of-care as well as terahertz biosensing and imaging for improving global health. Finally, we discuss the current challenges and future prospects associated with the existing solar energy conversion and biosensing systems.

2014 ◽  
Vol 26 (1) ◽  
pp. 015703 ◽  
Author(s):  
S D Erickson ◽  
T J Smith ◽  
L M Moses ◽  
R K Watt ◽  
J S Colton

2016 ◽  
Author(s):  
Julius E. Yellowhair ◽  
Hoyeong Kwon ◽  
Andrea Alu ◽  
Robert L. Jarecki ◽  
Subhash L. Shinde

Author(s):  
Xiang Zhang ◽  
Kongzhao Su ◽  
Aya Mohamed ◽  
Caiping Liu ◽  
Qing-Fu Sun ◽  
...  

Photo-assisted Li-organic batteries provide an attractive approach for solar energy conversion and storage, while the challenge lies in the design of high-efficiency organic cathodes. Herein, a charge-separated and redox-active C60@porous...


Trees and other forms of vegetation are well designed for the collection and storage of solar energy. Moreover, photosynthetic organisms show enormous diversity and are well adapted for a wide range of environments. Biomass is convertible to liquid and gaseous fuels by a number of established processes, and this paper examines the possible contribution of biomass to world energy demands. The maximum efficiency of solar energy conversion in plant production is 5-6 %, but plants grown under usual field conditions do not achieve this degree of conversion. The highest yielding crops convert solar energy into plant material with an efficiency of 1-2%, but the average yields of the major crops and forests indicate considerably lower efficiencies. The average efficiency of solar energy conversion on a global scale is estimated as about 0.15 %. The energy content of the annual biomass residues in Australia and U.S.A. is equal to about one-quarter of the primary energy use in those countries, but only about one-third of the residues are considered to be readily recoverable. A number of high yielding crops are examined as potential fuel crops. Energy inputs for growing non-irrigated crops in Australia are estimated to amount to 7-17 % of the solar energy stored in the total crop biomass. Irrigation adds considerably to the energy cost of producing crops. The overall energy efficiency of fuel production from biomass varies from 20 to 58%, depending on the nature of the biomass and the process used to produce liquid or gaseous fuel. A recent estimate by an Australian committee of the potential contribution of biomass to liquid fuel production in Australia is presented. It is concluded that biomass will not be able to provide a substantial fraction of the world’s energy demand, although it can make a useful contribution.


2017 ◽  
Vol 5 (5) ◽  
pp. 1008-1021 ◽  
Author(s):  
Wei Ye ◽  
Ran Long ◽  
Hao Huang ◽  
Yujie Xiong

This review outlines the recent progress on the integration of plasmonic nanostructures with photocatalysis and photovoltaics toward solar energy conversion.


1996 ◽  
Vol 65 (2) ◽  
pp. 207-213 ◽  
Author(s):  
Haruhiko YAMAMOTO ◽  
Hitoshi HONJO ◽  
Seiji HAYAKAWA ◽  
Yoshinori SUZUKI ◽  
Naoyuki KAWADA

2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Kristine A. Zhang ◽  
David Ma ◽  
Ying-Chih Pu ◽  
Yat Li

Solar power holds great potential as an alternative energy source, but current photovoltaic cells have much room for improvement in cost and efficiency. Our objective was to develop metal nanostructures whose surface plasmon resonance (SPR) spectra closely match the solar spectrum to enhance light absorption and scattering. We employed the finite-difference time-domain simulation method to evaluate the effect of varying key parameters. A novel nanostructure with SPR absorption matching a region of the solar spectrum (300 to 1500 nm) that contains 90% of solar energy was successfully designed. This structure consists of a large gold-silica core-shell structure with smaller gold nanoparticles and nanorods on its surface. Such complex nanostructures are promising for broad and tunable absorption spectra. In addition, we investigated the SPR of silver nanoparticle arrays, which can achieve scattering close to the solar spectrum. We demonstrated an improvement in efficiency of over 30% with optimal nanoparticle radius and periods of 75 nm and 325 nm, respectively. In combination, our studies enable high-efficiency, tunable, and cost-effective enhancement of both light absorption and scattering, which has potential applications in solar energy conversion as well as biomedical imaging.


Sign in / Sign up

Export Citation Format

Share Document