scholarly journals Fracture Toughness Estimation of Single-Crystal Aluminum at Nanoscale

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 680
Author(s):  
Wilmer Velilla-Díaz ◽  
Luis Ricardo ◽  
Argemiro Palencia ◽  
Habib R. Zambrano

In this publication, molecular dynamics simulations are used to investigate the fracture behavior of single-crystal aluminum. The stress intensity factor is estimated by means of four different methods, the accuracy is assessed for each approach and the fracture toughness is estimated. The proposed methodology is also applied to estimate the fracture toughness for graphene and diamond using published data from other scientific articles. The obtained fracture toughness for the single-crystal aluminum is compared with other nanomaterials that have similar microstructures. Dislocation emission during the fracture simulation of the cracked nano-crystal of aluminum is analyzed to study the fracture behavior. Brittle fracture behavior is the predominant failure mode for the nanomaterials studied in this research.

2012 ◽  
Vol 1475 ◽  
Author(s):  
Le-Hai Kieu ◽  
Jean-Marc Delaye ◽  
Claude Stolz

ABSTRACTClassical molecular dynamics simulations were used to compare the fracture behavior of pristine and disordered specimens of a simplified nuclear glass. The disordered specimen is prepared in order to mimic the effects of accumulating displacement cascades. It is characterized by a decreasing Boron coordination and an increasing Na concentration in a modifying role. We observe an enhancement of the plasticity of the disordered glass and a decrease of the elastic limit, resulting in greater fracture toughness. The simulation findings are consistent with experimental results.


1988 ◽  
Vol 100 ◽  
Author(s):  
Davy Y. Lo ◽  
Tom A. Tombrello ◽  
Mark H. Shapiro ◽  
Don E. Harrison

ABSTRACTMany-body forces obtained by the Embedded-Atom Method (EAM) [41 are incorporated into the description of low energy collisions and surface ejection processes in molecular dynamics simulations of sputtering from metal targets. Bombardments of small, single crystal Cu targets (400–500 atoms) in three different orientations ({100}, {110}, {111}) by 5 keV Ar+ ions have been simulated. The results are compared to simulations using purely pair-wise additive interactions. Significant differences in the spectra of ejected atoms are found.


2015 ◽  
Vol 107 ◽  
pp. 58-65 ◽  
Author(s):  
Xiao-Ting Xu ◽  
Fu-Ling Tang ◽  
Hong-Tao Xue ◽  
Wei-Yuan Yu ◽  
Liang Zhu ◽  
...  

2020 ◽  
Vol 105 (11) ◽  
pp. 1631-1638 ◽  
Author(s):  
Georgia Cametti ◽  
Sergey V. Churakov

Abstract The modification of natural zeolites via ion exchange is an efficient technique used to improve their performances and tune their properties for specific applications. In this study, a natural levyne-Ca intergrown with erionite was fully exchanged by Ag+ and its structure [with idealized chemical composition Ag6(Si,Al)18O36·18H2O] was investigated by combining a theoretical and experimental approach. Single-crystal X-ray diffraction data demonstrated that Ag-levyne maintained the R3m space group, characteristic of the natural levyne. Ag ions distribute over partially occupied sites along the threefold axis and, differently from the pristine material, at the wall of the 8-membered ring window of the lev cavity. The lack of ~30% of Ag ions that could not be located by the structural refinement is ascribed to the strong disorder of the extraframework occupants. The structural results obtained by Molecular Dynamics simulations are in overall agreement with the experimental data and showed that, on average, Ag+ is surrounded by ~2 H2O and 1 framework oxygen at distances between 2.43 and 2.6 Å. Molecular Dynamics trajectories indicate that the occurrence of silver inside the D6R cage depends on the water content: silver occupancy of D6R cages is estimated to be 83, 30, and 0% when the structure contains 3, 2.5, and 2 H2O per Ag ion, respectively. The cation-exchange process, as demonstrated by scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS) spectrometry, affects the intergrown erionite as well. A structural characterization of the Ag-erionite phase (with dimension <100 μm) was possible by means of a CuKα micro-focus source: structure solution pointed to P63/mmc space group, indicating no change with respect to natural erionite. In agreement with previous studies, K ions in the cancrinite cage could not be exchanged, whereas Ag+ is found in the eri cavity.


Sign in / Sign up

Export Citation Format

Share Document