scholarly journals Tunable Synthesis of Predominant Semi-Ionic and Covalent Fluorine Bonding States on a Graphene Surface

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 942
Author(s):  
Jae-Won Lee ◽  
Seung-Pil Jeong ◽  
Nam-Ho You ◽  
Sook-Young Moon

In this study, fluorinated graphene (FG) was synthesized via a hydrothermal reaction. Graphene oxides (GOs) with different oxygen bonding states and oxygen contents (GO(F), GO(P), and GO(HU)) were used as starting materials. GO(F) and GO(P) are commercial-type GOs from Grapheneall. GO(HU) was prepared using a modified Hummers method. The synthesized FGs from GO(F), GO(P), and GO(HU) are denoted as FG(F), FG(P), and FG(HU), respectively. The F atoms were bound to the graphene surface with predominantly semi-ionic or covalent bonding depending on the GO oxygen state. FG(F) and FG(HU) exhibited less extensive fluorination than FG(P) despite the same or higher oxygen contents compared with that in FG(P). This difference was attributed to the difference in the C=O content of GOs because the C=O bonds in GO primarily produce covalent C–F bonds. Thus, FG(F) and FG(HU) mainly exhibited semi-ionic C–F bonds. The doped F atoms were used to tune the electronic properties and surface chemistry of graphene. The fluorination reaction also improved the extent of reduction of GO.

2020 ◽  
Vol 46 (15) ◽  
pp. 23997-24007 ◽  
Author(s):  
Abedalkader Alkhouzaam ◽  
Hazim Qiblawey ◽  
Majeda Khraisheh ◽  
Muataz Atieh ◽  
Mohammad Al-Ghouti

2019 ◽  
Vol 2 (3) ◽  
pp. 601-605
Author(s):  
Kübra Yıldız ◽  
Muhammet Uzun

In this study, graphene oxide (GO) was synthesized from graphite using modified Hummers method. According to other methods known in the literature, modified Hummers method; it is simpler and less costly in terms of process steps. In addition, it is safer and environmentally friendly than the Hummers method. Reduced Graphene Oxide (RGO) was obtained by reduction of graphene oxides (GO) synthesized by modified Hummers method. It is understood from the obtained results that GO is synthesized successfully from graphite powder by modified Hummers method and RGO is obtained successfully by reduction of graphene oxides (GO).


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1632
Author(s):  
Mengyao Chen ◽  
Xiaohua Qi ◽  
Wenna Zhang ◽  
Na Yang ◽  
Di Yang ◽  
...  

Unzipping of carbon nanotubes (CNTs) has been widely explored to obtain new nanocarbon structures with promising properties. In this work, we report that unzipping of CNTs according to the well-established modified Hummers method produces unzipped CNTs (uCNTs) that exhibit self-photoluminescence that depends on the diameter of pristine CNTs. The uCNTs were characterized using FTIR spectroscopy, XRD, XPS, and Raman spectroscopy indicating that unzipping is accompanied by the introduction of defects and oxygen-containing functional groups. The morphology of CNTs and uCNTs was determined by TEM showing longitude unzipping of CNTs. Our study shows that increasing the diameter of pristine CNTs results in decreasing the edge etching effect and decreasing the functionality of uCNTs. Based on the UV-Vis spectra, the band gap of uCNTs was calculated using the Kubelka–Munk function. The band gap of uCNTs increased with decreasing diameter of pristine CNTs. The uCNTs exhibited photoluminescence with a good emission in the visible light region. The uCNTs with the largest band gap and the highest oxygen content had the strongest fluorescence intensity. Moreover, different metal ions produced different degrees of fluorescence quenching for uCNT-15, which verified the self-photoluminescence of uCNTs.


2015 ◽  
Vol 33 (2) ◽  
pp. 251-258
Author(s):  
Bendouma Doumi ◽  
Allel Mokaddem ◽  
Mustapha Ishak-Boushaki ◽  
Miloud Boutaleb ◽  
Abdelkader Tadjer

AbstractIn the present work, we have investigated the structural and electronic properties of TMAl (TM = Fe, Co, and Ni) transition metal aluminides in the B2 structure, using first-principle calculations of the density functional theory (DFT) based on the linearized augmented plane wave method (FP-LAPW) as implemented in the WIEN2k code, in which the energy of exchange and correlation are treated by the generalized gradient approximation (GGA), proposed in 1996 by Perdew, Burke and Ernzerhof (PBE). The ground state properties have been calculated and compared with other calculations, and the electronic structures of all FeAl, CoAl, and NiAl compounds exhibited a metallic behavior. It was depicted that the density of states is characterized by the large hybridization between the s-p (Al) and 3d (Fe, Co, and Ni) states, which creates the pseudogap in the region of anti-bonding states. Moreover, the band structures of FeAl, CoAl, and NiAl are similar to each other and the difference between them is in the energy level of each band relative to the Fermi level.


1996 ◽  
Vol 442 ◽  
Author(s):  
Harald Overhof

AbstractThe electronic properties of 3d transition metal (TM) defects located on one of the four different tetrahedral positions in 3C SiC are shown to be quite site-dependent. We explain the differences for the 3d TMs on the two substitutional sites within the vacancy model: the difference of the electronic structure between the carbon vacancy VC and the silicon vacancy VSi is responsible for the differences of the 3d TMs. The electronic properties of 3d TMs on the two tetrahedral interstitial sites differ even more: the TMs surrounded tetrahedrally by four Si atoms experience a large crystal field splitting while the tetrahedral C environment does not give rise to a significant crystal field splitting at all. It is only in the latter case that high-spin configurations are predicted.


2021 ◽  
Vol 324 ◽  
pp. 87-93
Author(s):  
Mohamed Adel ◽  
Abdel Hady A. Abdel-Wahab ◽  
Ahmed Abdel-Mawgood ◽  
Ahmed Osman Egiza

Graphene oxide (GO) is an oxidized nanosheets of graphite with a 2D planar structure. GO could be readily complexed with bio-entities as it possesses many oxygen-containing functionalities on its surface. The preparation process is fast, easy, and cost-effective. It was prepared using modified Hummers’ method in acidic solution as a primary solvent and potassium permanganate as an oxidizing agent. Afterwards, it was successfully characterized by FTIR, UV-visible spectroscopy, as well as XRD and Raman spectroscopy, and finally, SEM analysis. It was observed that the formed GO is mainly composed of carbon and oxygen elements rich in oxygen functional groups. Furthermore, the existence of (001) plane in XRD interprets the complete oxidation of graphite with d-spacing 9 Å. Moreover, Raman spectroscopy displayed the sp3 carbon hybridization, besides, the ID/IG ratio is found to be 0.84, which confirms the disorder between graphene oxide layers. The SEM images also pointed out that graphene oxide sheets were regularly stacked together as flake-like structures. Accordingly, the richness of oxygen-containing functionalities was confirmed. Hence, it is appropriate to be used as a base transducer for biosensing applications.


2002 ◽  
Vol 751 ◽  
Author(s):  
Yifeng Wang ◽  
Charles Bryan ◽  
Huifang Xu ◽  
Huizhen Gao

AbstractAcid-base titration and metal sorption experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. It has been demonstrated that surface chemistry and ion sorption within nanopores can be significantly modified by a nano-scale space confinement. As the pore size is reduced to a few nanometers, the difference between surface acidity constants (ΔpK = pK2 – pK1) decreases, giving rise to a higher surface charge density on a nanopore surface than that on an unconfined solid-solution interface. The change in surface acidity constants results in a shift of ion sorption edges and enhances ion sorption on that nanopore surfaces.


2011 ◽  
Vol 327 ◽  
pp. 115-119 ◽  
Author(s):  
Duo Wang ◽  
Jie Gao ◽  
Wei Fang Xu ◽  
Feng Bao ◽  
Rui Ma ◽  
...  

Graphene oxide (GO) was made by a modified Hummers method. Graphene oxide modified phenolic resin nanocomposites (GO/PF) were prepared by Steglich esterification, catalyzed by dicyclohexyl carbodiimide and 4-dimethylaminopyridine. The composites were characterized by Fourier transform infrared spectrometry, differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. The result revealed that the graphene oxide was absolutely exfoliated and covalent linked GO/PF composite was obtained. The thermal stability of PF is remarkably improved by modification with GO.


1990 ◽  
Vol 211 ◽  
Author(s):  
Gary. L. Leatherman ◽  
Tahar El-Korchi ◽  
Thomas M. Holmes ◽  
R. Nathan Katz

AbstractGlass fiber reinforced composites made with an oxynitride analogue of alkali resistant glass were tested in tension after accelerated aging. The results were compared to composites made from oxide alkali resistant glass. The strength of the oxynitride glass reinforced composites was almost double that of the oxide glass based material. The results are related to the improved properties of oxynitride glass over oxide glass. In particular previous work has shown that surface chemistry of the oxynitride glass inhibits the formation of a strong bond between fiber and matrix. The difference in surface chemistry was examined by measuring the contact angle of aqueous solutions with respect to nitrogen content of the glass.


Sign in / Sign up

Export Citation Format

Share Document