scholarly journals Superparamagnetic ZnFe2O4 Nanoparticles-Reduced Graphene Oxide-Polyurethane Resin Based Nanocomposites for Electromagnetic Interference Shielding Application

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1112
Author(s):  
Raghvendra Singh Yadav ◽  
Anju ◽  
Thaiskang Jamatia ◽  
Ivo Kuřitka ◽  
Jarmila Vilčáková ◽  
...  

Superparamagnetic ZnFe2O4 spinel ferrite nanoparticles were prepared by the sonochemical synthesis method at different ultra-sonication times of 25 min (ZS25), 50 min (ZS50), and 100 min (ZS100). The structural properties of ZnFe2O4 spinel ferrite nanoparticles were controlled via sonochemical synthesis time. The average crystallite size increases from 3.0 nm to 4.0 nm with a rise of sonication time from 25 min to 100 min. The change of physical properties of ZnFe2O4 nanoparticles with the increase of sonication time was observed. The prepared ZnFe2O4 nanoparticles show superparamagnetic behavior. The prepared ZnFe2O4 nanoparticles (ZS25, ZS50, and ZS100) and reduced graphene oxide (RGO) were embedded in a polyurethane resin (PUR) matrix as a shield against electromagnetic pollution. The ultra-sonication method has been used for the preparation of nanocomposites. The total shielding effectiveness (SET) value for the prepared nanocomposites was studied at a thickness of 1 mm in the range of 8.2–12.4 GHz. The high attenuation constant (α) value of the prepared ZS100-RGO-PUR nanocomposite as compared with other samples recommended high absorption of electromagnetic waves. The existence of electric-magnetic nanofillers in the resin matrix delivered the inclusive acts of magnetic loss, dielectric loss, appropriate attenuation constant, and effective impedance matching. The synergistic effect of ZnFe2O4 and RGO in the PUR matrix led to high interfacial polarization and, consequently, significant absorption of the electromagnetic waves. The outcomes and methods also assure an inventive and competent approach to develop lightweight and flexible polyurethane resin matrix-based nanocomposites, consisting of superparamagnetic zinc ferrite nanoparticles and reduced graphene oxide as a shield against electromagnetic pollution.

2020 ◽  
Vol 13 (3) ◽  
pp. 181-190

Abstract: In this paper, we analyze the dc and ac electrical conductivities, in the 240 to 400 K temperature range and 102 to 106 Hz frequency range, of a percolating system synthesized by mixing reduced graphene oxide (rGO) particles in insulating epoxy resin matrix, diglycidyl ether of bisphenol A (DGEBA). We found that the dc electrical conductivity of the samples is strongly related to the rGO content, indicating a percolating behavior with percolation threshold ≈ 4 %. The critical behavior of the dc electrical conductivity as a function of the temperature indicates a strong positive temperature coefficient and a negative temperature coefficient of resistivity below and above the transition temperature Tg, respectively. Moreover, the results showed that the dc conductivity obeys the Arrhenius law and the ac electrical conductivity is both frequency and temperature dependent and follows the Jonscher’s power law. Keywords: Composites, Dielectric properties, Fillers, Glass transition, Graphene.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2481
Author(s):  
Raghvendra Singh Yadav ◽  
Anju ◽  
Thaiskang Jamatia ◽  
Ivo Kuřitka ◽  
Jarmila Vilčáková ◽  
...  

In this work, various tunable sized spinel ferrite MnFe2O4 nanoparticles (namely MF20, MF40, MF60 and MF80) with reduced graphene oxide (RGO) were embedded in a polypropylene (PP) matrix. The particle size and structural feature of magnetic filler MnFe2O4 nanoparticles were controlled by sonochemical synthesis time 20 min, 40 min, 60 min and 80 min. As a result, the electromagnetic interference shielding characteristics of developed nanocomposites MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP were also controlled by tuning of magnetic/dielectric loss. The maximum value of total shielding effectiveness (SET) was 71.3 dB for the MF80-RGO-PP nanocomposite sample with a thickness of 0.5 mm in the frequency range (8.2–12.4 GHz). This lightweight, flexible and thin nanocomposite sheet based on the appropriate size of MnFe2O4 nanoparticles with reduced graphene oxide demonstrates a high-performance advanced nanocomposite for cutting-edge electromagnetic interference shielding application.


2019 ◽  
Vol 254 ◽  
pp. 1-9 ◽  
Author(s):  
Hafsa Javed ◽  
Abdul Rehman ◽  
Sara Mussadiq ◽  
Muhammad Shahid ◽  
Muhammad Azhar Khan ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (12) ◽  
pp. 9069-9074 ◽  
Author(s):  
Shouliang Wu ◽  
Panpan Wang ◽  
Yunyu Cai ◽  
Dewei Liang ◽  
Yixing Ye ◽  
...  

A colloidal approach was developed to immobilize magnetic ZnFe2O4 onto simultaneously reduced GO toward the degradation of dyes under visible-light irradiation.


Sign in / Sign up

Export Citation Format

Share Document