scholarly journals Phase Transitions in the “Spinel-Layered” Li1+xNi0.5Mn1.5O4 (x = 0, 0.5, 1) Cathodes upon (De)lithiation Studied with Operando Synchrotron X-ray Powder Diffraction

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1368
Author(s):  
Oleg A. Drozhzhin ◽  
Anastasia M. Alekseeva ◽  
Vitalii A. Shevchenko ◽  
Dmitry Chernyshov ◽  
Artem M. Abakumov ◽  
...  

“Spinel-layered” Li1+xNi0.5Mn1.5O4 (x = 0, 0.5, 1) materials are considered as a cobalt-free alternative to currently used positive electrode (cathode) materials for Li-ion batteries. In this work, their electrochemical properties and corresponding phase transitions were studied by means of synchrotron X-ray powder diffraction (SXPD) in operando regime. Within the potential limit of 2.2–4.9 V vs. Li/Li+ LiNi0.5Mn1.5O4 with cubic spinel type structure demonstrates the capacity of 230 mAh·g−1 associated with three first-order phase transitions with significant total volume change of 8.1%. The Li2Ni0.5Mn1.5O4 material exhibits similar capacity value and subsequence of the phase transitions of the spinel phase, although the fraction of the spinel-type phase in this material does not exceed 30 wt.%. The main component of Li2Ni0.5Mn1.5O4 is Li-rich layered oxide Li(Li0.28Mn0.64Ni0.08)O2, which provides nearly half of the capacity with very small unit cell volume change of 0.7%. Lower mechanical stress associated with Li (de)intercalation provides better cycling stability of the spinel-layered complex materials and makes them more perspective for practical applications compared to the single-phase LiNi0.5Mn1.5O4 high-voltage cathode material.

2000 ◽  
Vol 33 (2) ◽  
pp. 279-284 ◽  
Author(s):  
J.-E. Jørgensen ◽  
J. Staun Olsen ◽  
L. Gerward

ReO3has been studied at pressures up to 52 GPa by X-ray powder diffraction. The previously observed cubicIm3¯ high-pressure phase was shown to transform to a monoclinic MnF3-related phase at about 3 GPa. All patterns recorded above 12 GPa could be indexed on rhombohedral cells. The compressibility was observed to decrease abruptly at 38 GPa. It is therefore proposed that the oxygen ions are hexagonally close packed above this pressure, giving rise to two rhombohedral phases labelled I and II. The zero-pressure bulk moduliBoof the observed phases were determined and the rhombohedral phase II was found to have an extremely large value of 617 (10) GPa. It was found that ReO3transforms back to thePm3¯mphase found at ambient pressure.


1995 ◽  
Vol 02 (02) ◽  
pp. 141-145 ◽  
Author(s):  
E. WETLI ◽  
M. HOCHSTRASSER ◽  
D. PESCIA ◽  
M. ERBUDAK

In the bulk binary alloy Al-3 at.% Ag , Ag 2 Al precipitates are formed below 410°C which are reversibly dissolved at elevated temperatures. We have followed this phase transition at a (100) surface as a function of temperature by monitoring the bandwidth of the Ag 4d states in X-ray photoelectron spectroscopy. Since the bandwidth measures the coordination number of the emitting atoms, it directly reveals the short-range order of the Ag atoms at the surface. The measurements show that the dissolution of the Ag -rich clusters starts at temperatures at least 100 K below the bulk transition, and the observed hysteresis behavior is indicative of a first-order phase transition at the surface.


2016 ◽  
Vol 86 ◽  
pp. 90-96 ◽  
Author(s):  
Beatriz Pinheiro Bezerra ◽  
Jéssica Castro Fonseca ◽  
Yara Santiago de Oliveira ◽  
Maria Silmara A. de Santana ◽  
Keilla F. Silva ◽  
...  

2004 ◽  
Vol 362 (1-2) ◽  
pp. 231-235 ◽  
Author(s):  
P Piszora ◽  
J Darul ◽  
W Nowicki ◽  
E Wolska

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1476
Author(s):  
Vasyl Mykhailovych ◽  
Andrii Kanak ◽  
Ştefana Cojocaru ◽  
Elena-Daniela Chitoiu-Arsene ◽  
Mircea Nicolae Palamaru ◽  
...  

Spinel chromite nanoparticles are prospective candidates for a variety of applications from catalysis to depollution. In this work, we used a sol–gel auto-combustion method to synthesize spinel-type MgCr2O4 nanoparticles by using fructose (FS), tartaric acid (TA), and hexamethylenetetramine (HMTA) as chelating/fuel agents. The optimal temperature treatment for the formation of impurity-free MgCr2O4 nanostructures was found to range from 500 to 750 °C. Fourier transform infrared (FTIR) spectroscopy was used to determine the lattice vibrations of the corresponding chemical bonds from octahedral and tetrahedral positions, and the optical band gap was calculated from UV–VIS spectrophotometry. The stabilization of the spinel phase was proved by X-ray diffraction (XRD) and energy-dispersive X-ray (EDX) analysis. From field-emission scanning electron microscopy (FE-SEM), we found that the size of the constituent particles ranged from 10 to 40 nm. The catalytic activity of the as-prepared MgCr2O4 nanocrystals synthesized by using tartaric acid as a chelating/fuel agent was tested on the decomposition of hydrogen peroxide. In particular, we found that the nature of the chelating/fuel agent as well as the energy released during the auto-combustion played an important role on the structural, optical, and catalytic properties of MgCr2O4 nanoparticles obtained by this synthetic route.


Sign in / Sign up

Export Citation Format

Share Document