scholarly journals Impact of Nonlocality on Group Delay and Reflective Behavior Near Surface Plasmon Resonances in Otto Structure

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1780
Author(s):  
Lin Wang ◽  
Shangqing Liang ◽  
Yuanguo Zhou ◽  
Li-Gang Wang

In this work, we study the effects of nonlocality on the optical response near surface plasmon resonance of the Otto structure, and such nonlocality is considered in the hydrodynamic model. Through analyzing the dispersion relations and optical response predicted by the Drude’s and hydrodynamic model in the system, we find that the nonlocal effect is sensitive to the large propagation wavevector, and there exists a critical incident angle and thickness. The critical point moves to the smaller value when the nonlocal effect is taken into account. Before this point, the absorption of the reflected light pulse enhances; however, the situation reverses after this point. In the region between the two different critical points in the frequency scan calculated from local and nonlocal theories, the group delay of the reflected light pulse shows opposite behaviors. These results are explained in terms of the pole and zero phenomenological model in complex frequency plane. Our work may contribute to the fundamental understanding of light–matter interactions at the nanoscale and in the design of optical devices.

2021 ◽  
pp. 2100847
Author(s):  
Yonglin He ◽  
Weimin Yang ◽  
Tien‐Mo Shih ◽  
Jingyu Wang ◽  
Dumeng Zhang ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4348
Author(s):  
Piotr Mrozek ◽  
Ewa Gorodkiewicz ◽  
Paweł Falkowski ◽  
Bogusław Hościło

Comparative analysis of the sensitivity of two surface plasmon resonance (SPR) biosensors was conducted on a single-metallic Au sensor and bimetallic Ag–Au sensor, using a cathepsin S sensor as an example. Numerically modeled resonance curves of Au and Ag–Au layers, with parameters verified by the results of experimental reflectance measurement of real-life systems, were used for the analysis of these sensors. Mutual relationships were determined between ∂Y/∂n components of sensitivity of the Y signal in the SPR measurement to change the refractive index n of the near-surface sensing layer and ∂n/∂c sensitivity of refractive index n to change the analyte’s concentration, c, for both types of sensors. Obtained results were related to experimentally determined calibration curves of both sensors. A characteristic feature arising from the comparison of calibration curves is the similar level of Au and Ag–Au biosensors’ sensitivity in the linear range, where the signal of the AgAu sensor is at a level several times greater. It was shown that the influence of sensing surface morphology on the ∂n/∂c sensitivity component had to be incorporated to explain the features of calibration curves of sensors. The shape of the sensory surface relief was proposed to increase the sensor sensitivity at low analyte concentrations.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Aleksandra Michalek ◽  
Tahseen Jwad ◽  
Pavel Penchev ◽  
Tian Long See ◽  
Stefan Dimov

Abstract Laser-induced ripples that are also known as laser-induced periodic surface structures (LIPSS) have gained a considerable attention by researchers and industry due to their surface functionalization applications. However, texturing large areas or batch manufacture of parts that incorporate LIPSS surfaces require the development of tools for monitoring the LIPSS generation and potentially for controlling their main geometrical characteristics, i.e., spatial periodicity, orientation, and amplitude. In this context, the focus of the research reported in this paper is on developing process monitoring and inspection methods for identifying shifts and changes in these characteristics. One of the well-known and widely used by industry method for characterizing and inspecting surfaces is light scattering, and this research investigates the capabilities of this method for inline monitoring of LIPSS optical response. A simple setup was designed and implemented for measuring the diffraction angle and intensity of the reflected light from LIPSS surfaces. The capabilities of this concept for determining relative shifts in the optical response on surfaces processed with known disturbances, such as incident angle deviations and focus offset, were investigated. Sensitivity of the method proved to be sufficient to detect shifts/deviations from LIPSS reference and thus potentially to monitor their generation in line with a simple sensor, e.g., the LIPSS treatment of larger tool surfaces or serial manufacture of holograms.


2014 ◽  
Vol 2014 (1) ◽  
pp. 901-918
Author(s):  
James A. Stronach ◽  
Aurelien Hospital

ABSTRACT Oil behavior and fate have been simulated extensively by several spill models. These simulations can be greatly enhanced by the use of a coupled three-dimensional model of currents and water properties to determine oil transport and weathering, both on the water surface and in the water column. Several physical and chemical processes such as vertical dispersion in response to wave action, resurfacing when waves die down, sinking through loss of volatiles and dissolution are essential in assessing the impact of an oil spill on the environment. Dissolution is especially important, considering the known toxicity of several of the constituents of liquid hydrocarbons. For this study, a three-dimensional hydrodynamic model of coastal British Columbia was coupled to an oil trajectory and weathering model in order to simulate the complete fate and behaviour of surface, shoreline-retained, dissolved, sunken and dispersed oil. Utilization of a three-dimensional model is the key to adequately modelling the transport of a spill in an estuarine region such as in the Strait of Georgia, B.C., where the distribution of currents and water properties is strongly affected by estuarine processes: the Fraser River enters at the surface and oceanic waters from the Pacific enter as a deep inflow. Three-dimensional currents and water properties were provided by the hydrodynamic model, H3D, a semi-implicit model using a staggered Arakawa grid and variable number of layers in the vertical direction to resolve near-surface processes. Waves were simulated using the wave model SWAN. Winds were obtained from the local network of coastal light stations and wind buoys. Stochastic modelling was conducted first, using only surface currents, to determine probabilistic maps of the oil trajectory on water and statistical results were extracted, such as the amount of shoreline oiled and the amount of oil evaporated, both for the ensemble of simulations constituting the stochastic simulation, as well as for any particular individual simulation. Deterministic scenarios were then selected and the fate of the oil, such as the dissolved and sunken fractions, was tracked over a 14 day period on the three-dimensional grid. This method has been used for environmental impact assessment and spill response planning.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Guimei Li ◽  
Qiwei Liu ◽  
Yue Liu ◽  
Yueying Wei ◽  
Rui Weng ◽  
...  

In this paper, the group delay of the transverse magnetic (TM) polarized wave reflected from a modified Otto configuration with graphene surface plasmon is investigated theoretically. The findings show that the optical group delay in this structure can be enhanced negatively and can be switched from negative to positive due to the excitation of surface plasmon by graphene. It is clear that the negative group delay can be actively tuned through the Fermi energy of the graphene. Furthermore, the delay properties can also be manipulated by changing either the relaxation time of graphene or the distance between the coupling prism and the graphene. These tunable delay characteristics are promising for fabricating grapheme-based optical delay devices and other applications in the terahertz regime.


1997 ◽  
pp. 1901 ◽  
Author(s):  
Rodolphe Antoine ◽  
Pierre F. Brevet ◽  
Hubert H. Girault ◽  
Rodolphe Antoine ◽  
Pierre F. Brevet ◽  
...  

2015 ◽  
Vol 472 ◽  
pp. 49-55
Author(s):  
Hong-jie Xue ◽  
Yabin Yu ◽  
Reng-lai Wu ◽  
Yan-qin Yu ◽  
Ya-xin Wang

Sign in / Sign up

Export Citation Format

Share Document