scholarly journals Propane Steam Reforming over Catalysts Derived from Noble Metal (Ru, Rh)-Substituted LaNiO3 and La0.8Sr0.2NiO3 Perovskite Precursors

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1931
Author(s):  
Theodora Ramantani ◽  
Georgios Bampos ◽  
Andreas Vavatsikos ◽  
Georgios Vatskalis ◽  
Dimitris I. Kondarides

The propane steam reforming (PSR) reaction was investigated over catalysts derived from LaNiO3 (LN), La0.8Sr0.2NiO3 (LSN), and noble metal-substituted LNMx and LSNMx (M = Ru, Rh; x = 0.01, 0.1) perovskites. The incorporation of foreign cations in the A and/or B sites of the perovskite structure resulted in an increase in the specific surface area, a shift of XRD lines toward lower diffraction angles, and a decrease of the mean primary crystallite size of the parent material. Exposure of the as-prepared samples to reaction conditions resulted in the in situ development of new phases including metallic Ni and La2O2CO3, which participate actively in the PSR reaction. The LN-derived catalyst exhibited higher activity compared to LSN, and its performance for the title reaction did not change appreciably following partial substitution of Ru for Ni. In contrast, incorporation of Ru and, especially, Rh in the LSN perovskite matrix resulted in the development of catalysts with significantly enhanced catalytic performance, which improved by increasing the noble metal content. The best results were obtained for the LSNRh0.1-derived sample, which exhibited excellent long-term stability for 40 hours on stream as well as high propane conversion (XC3H8 = 92%) and H2 selectivity (SH2 = 97%) at 600 °C.

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1948
Author(s):  
Aliki Kokka ◽  
Athanasia Petala ◽  
Paraskevi Panagiotopoulou

The catalytic performance of supported Ni catalysts for the propane steam reforming reaction was investigated with respect to the nature of the support. It was found that Ni is much more active when supported on ZrO2 or YSZ compared to TiO2, whereas Al2O3- and CeO2-supported catalysts exhibit intermediate performance. The turnover frequency (TOF) of C3H8 conversion increases by more than one order of magnitude in the order Ni/TiO2 < Ni/CeO2 < Ni/Al2O3 < Ni/YSZ < Ni/ZrO2, accompanied by a parallel increase of the selectivity toward the intermediate methane produced. In situ FTIR experiments indicate that CHx species produced via the dissociative adsorption of propane are the key reaction intermediates, with their hydrogenation to CH4 and/or conversion to formates and, eventually, to CO, being favored over the most active Ni/ZrO2 catalyst. Long term stability test showed that Ni/ZrO2 exhibits excellent stability for more than 30 h on stream and thus, it can be considered as a suitable catalyst for the production of H2 via propane steam reforming.


2013 ◽  
Vol 38 (14) ◽  
pp. 5580-5593 ◽  
Author(s):  
Martha Cobo ◽  
Diana Pieruccini ◽  
Ricardo Abello ◽  
Laura Ariza ◽  
Luis Fernando Córdoba ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
La Li ◽  
Weijia Liu ◽  
Kai Jiang ◽  
Di Chen ◽  
Fengyu Qu ◽  
...  

AbstractZn-ion hybrid supercapacitors (SCs) are considered as promising energy storage owing to their high energy density compared to traditional SCs. How to realize the miniaturization, patterning, and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics. Ti3C2Tx cathode with outstanding conductivity, unique lamellar structure and good mechanical flexibility has been demonstrated tremendous potential in the design of Zn-ion SCs, but achieving long cycling stability and high rate stability is still big challenges. Here, we proposed a facile laser writing approach to fabricate patterned Ti3C2Tx-based Zn-ion micro-supercapacitors (MSCs), followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability, which exhibits 80% of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability. The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied. When the thickness reaches 0.851 µm the maximum areal capacitance of 72.02 mF cm−2 at scan rate of 10 mV s−1, which is 1.77 times higher than that with a thickness of 0.329 µm (35.6 mF cm−2). Moreover, the fabricated Ti3C2Tx based Zn-ion MSCs have excellent flexibility, a digital timer can be driven by the single device even under bending state, a flexible LED displayer of “TiC” logo also can be easily lighted by the MSC arrays under twisting, crimping, and winding conditions, demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics.


2021 ◽  
Vol 336 ◽  
pp. 457-468
Author(s):  
Charlotte Molinier ◽  
Marina Picot-Groz ◽  
Océane Malval ◽  
Sophie Le Lamer-Déchamps ◽  
Joël Richard ◽  
...  

Author(s):  
Kyungpyo Hong ◽  
Stephanie Nadya Sutanto ◽  
Jeong A. Lee ◽  
Jongsup Hong

Ni–Rh and Ni–Co nano-scale alloys exhibit high methane conversion, hydrogen yield, resistance to carbon formation, and long-term stability at low temperatures, allowing them to cope with the various operating conditions of direct methane-fueled PCFCs.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Nils Kristian Prenzler ◽  
Eugen Kludt ◽  
Thomas Giere ◽  
Rolf Salcher ◽  
Thomas Lenarz ◽  
...  

Objectives/Hypothesis. Comparing long term stability of the Middle Ear Transducers (MET) of the 1st generation T1 (Otologics LLC) with the current generation T2 (Cochlear Ltd.) in all our clinical cases with standard incus coupling. Study Design. Retrospective chart review. Methods. 52 ears implanted with a MET device between 2008 and 2016 were analyzed retrospectively. All patients suffered from sensorineural hearing loss and the actuator was coupled to the body of the incus (standard coupling). 23 ears were implanted with the transducer T1 (Otologics LLC) between 2008 and 2011 and 29 ears were implanted with the current transducer T2 since 2011 (Otologics LLC/Cochlear Ltd.). Latest available in situ and bone conduction (BC) thresholds were exploited for a follow-up period of up to 7 years after first fitting. Long term stability of coupling and actuator performance was evaluated by tracking differences between in situ and BC thresholds. Results. In the T1 group, 9 out of 23 implants were still used by the patients at their last follow-up visit (average observation time 3.7 yrs.; min 1.0 yrs., max 7.4 yrs.). In 9 patients a technical failure identified by a decrease of in situ threshold of more than 15 dB compared to BC thresholds [Δ (in situ – BC)] lead to non-usage of the implant and 7 explantations. Five other explantations occurred due to medical reasons such as BC threshold decrease, infection, or insufficient speech intelligibility with the device. In the T2 group, 23 out of 29 implants were still used at the most current follow-up visit (average observation time 3.3 yrs.; min 1.0 yrs., max 4.8 yrs.). No technical failures were observed up to more than 4 years after implantation. Five T2 patients discontinued using the device due to insufficient benefit; two of these patients were explanted. One patient had to be explanted before the activation of the device due to disorders of wound healing. Nevertheless, a small but significant decrease of hearing loss corrected coupling efficiency [Δ (in situ – BC)] was seen in the T2 group. Conclusions. In contrast to the T1 transducers of the earlier generation of MET systems where technical failures occurred frequently, no technical failures were detected after 29 implantations with the current T2 transducers. However, a small but significant decline of transmission efficiency was observable even in the T2 implanted group.


2020 ◽  
Vol 745 ◽  
pp. 140989
Author(s):  
Jinhee Park ◽  
Jinsung An ◽  
Hyeonyong Chung ◽  
Sang Hyun Kim ◽  
Kyoungphile Nam

2012 ◽  
Vol 455-456 ◽  
pp. 960-965
Author(s):  
Jian Huang ◽  
T. Huang ◽  
A. Rongzhang ◽  
Wei Huang ◽  
Ren Xiong Ma

Carbon dioxide reforming of methane over Ni/Mo/ La2O3-SBA-15 was studied. The catalyst was characterized by N2 adsorption, X-ray diffraction, H2-TPR,CO2-TPD and TG-GTA analysis. The results indicated that the introduction of an appropriate amount of La2O3 exhibited a higher activity and stability. In the long term stability test, La2O3 impregnated Ni/Mo-SBA-15 gave the highest conversion and stable activity at 800°C for 250 h. The effect of La was suggested to be due to its lower tendency to carbon deposition. Characterization results showed a strong interaction between La and Mo or Ni which facilitated the improvement of catalytic performance.


Sign in / Sign up

Export Citation Format

Share Document