scholarly journals An Interface Heterostructure of NiO and CeO2 for Using Electrolytes of Low-Temperature Solid Oxide Fuel Cells

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2004
Author(s):  
Junjiao Li ◽  
Jun Xie ◽  
Dongchen Li ◽  
Lei Yu ◽  
Chaowei Xu ◽  
...  

Interface engineering can be used to tune the properties of heterostructure materials at an atomic level, yielding exceptional final physical properties. In this work, we synthesized a heterostructure of a p-type semiconductor (NiO) and an n-type semiconductor (CeO2) for solid oxide fuel cell electrolytes. The CeO2-NiO heterostructure exhibited high ionic conductivity of 0.2 S cm−1 at 530 °C, which was further improved to 0.29 S cm−1 by the introduction of Na+ ions. When it was applied in the fuel cell, an excellent power density of 571 mW cm−1 was obtained, indicating that the CeO2-NiO heterostructure can provide favorable electrolyte functionality. The prepared CeO2-NiO heterostructures possessed both proton and oxygen ionic conductivities, with oxygen ionic conductivity dominating the fuel cell reaction. Further investigations in terms of electrical conductivity and electrode polarization, a proton and oxygen ionic co-conducting mechanism, and a mechanism for blocking electron transport showed that the reconstruction of the energy band at the interfaces was responsible for the enhanced ionic conductivity and cell power output. This work presents a new methodology and scientific understanding of semiconductor-based heterostructures for advanced ceramic fuel cells.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yixiao Cai ◽  
Yang Chen ◽  
Muhammad Akbar ◽  
Bin Jin ◽  
Zhengwen Tu ◽  
...  

AbstractSince colossal ionic conductivity was detected in the planar heterostructures consisting of fluorite and perovskite, heterostructures have drawn great research interest as potential electrolytes for solid oxide fuel cells (SOFCs). However, so far, the practical uses of such promising material have failed to materialize in SOFCs due to the short circuit risk caused by SrTiO3. In this study, a series of fluorite/perovskite heterostructures made of Sm-doped CeO2 and SrTiO3 (SDC–STO) are developed in a new bulk-heterostructure form and evaluated as electrolytes. The prepared cells exhibit a peak power density of 892 mW cm−2 along with open circuit voltage of 1.1 V at 550 °C for the optimal composition of 4SDC–6STO. Further electrical studies reveal a high ionic conductivity of 0.05–0.14 S cm−1 at 450–550 °C, which shows remarkable enhancement compared to that of simplex SDC. Via AC impedance analysis, it has been shown that the small grain-boundary and electrode polarization resistances play the major roles in resulting in the superior performance. Furthermore, a Schottky junction effect is proposed by considering the work functions and electronic affinities to interpret the avoidance of short circuit in the SDC–STO cell. Our findings thus indicate a new insight to design electrolytes for low-temperature SOFCs.


2019 ◽  
Vol 91 (1) ◽  
pp. 1059-1063
Author(s):  
Eun Heui Kang ◽  
Gwon Deok Han ◽  
Hyung Jong Choi ◽  
Kiho Bae ◽  
Heonjun Jeong ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hirofumi Sumi ◽  
Hiroyuki Shimada ◽  
Yuki Yamaguchi ◽  
Yasunobu Mizutani ◽  
Yuji Okuyama ◽  
...  

AbstractProtonic ceramic fuel cells (PCFCs) are expected to achieve high power generation efficiency at intermediate temperature around 400–600 °C. In the present work, the distribution of relaxation times (DRT) analysis was investigated in order to deconvolute the anode and cathode polarization resistances for PCFCs supported on yttria-doped barium cerate (BCY) electrolyte in comparison with solid oxide fuel cells (SOFCs) supported on scandia-stabilized zirconia (ScSZ) electrolyte. Four DRT peaks were detected from the impedance spectra measured at 700 °C excluding the gas diffusion process for ScSZ and BCY. The DRT peaks at 5 × 102–1 × 104 Hz and 1 × 100–2 × 102 Hz were related to the hydrogen oxidation reaction at the anode and the oxygen reduction reaction at the cathode, respectively, for both cells. The DRT peak at 2 × 101–1 × 103 Hz depended on the hydrogen concentration at the anode for ScSZ, while it was dependent on the oxygen concentration at the cathode for BCY. Compared to ScSZ, steam was produced at the opposite electrode in the case of BCY, which enhanced the cathode polarization resistance for PCFCs.


Ceramist ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 368-385
Author(s):  
Jong-Eun Hong ◽  
Seung-Bok Lee ◽  
Dong Woo Joh ◽  
Hye-Sung Kim ◽  
Tak-Hyoung Lim ◽  
...  

Solid oxide fuel cells (SOFCs) can generate electricity through an electrochemical conversion of the chemical energy of fuels including hydrogen, hydrocarbons, and biogas because of high operation temperatures. Ammonia has recently been considered as a promising hydrogen carrier that is relatively convenient to store and transport and can be decomposed into hydrogen and nitrogen with no carbon emission via catalytic cracking. Thus, much effort has been made to utilize ammonia as a clean fuel to SOFCs for power generation at high efficiency. This review is aiming at delivering the current progress of developing high temperature ceramic fuel cells fed with ammonia, particularly more focused on the achievements of a direct ammonia fueled SOFC (DA-SOFC) to shed light on the challenges of degrading the performance and durability. The problems are primarily attributed to a lack of rational catalysts, thermal imbalance, and the evolution of nitrides on the components including the Ni based anode, Ni mesh as current collector, and stainless steels of metallic interconnect that are exposed to the ammonia fuel environment incurring microstructural deformations and electrical and electrochemical deteriorations. Lastly, strategic pathways to overcome the inadequate performance and the instability are suggested to accomplish a commercialization of DA-SOFCs.


RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7-14
Author(s):  
Cheng Cheng Wang ◽  
Mortaza Gholizadeh ◽  
Bingxue Hou ◽  
Xincan Fan

Strontium segregation in a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) electrode reacts with Cr and S in a solid oxide fuel cell (SOFC), which can cause cell performance deterioration.


Sign in / Sign up

Export Citation Format

Share Document