scholarly journals Vertically Aligned Binder-Free TiO2 Nanotube Arrays Doped with Fe, S and Fe-S for Li-ion Batteries

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2924
Author(s):  
Suriyakumar Dasarathan ◽  
Mukarram Ali ◽  
Tai-Jong Jung ◽  
Junghwan Sung ◽  
Yoon-Cheol Ha ◽  
...  

Vertically aligned Fe, S, and Fe-S doped anatase TiO2 nanotube arrays are prepared by an electrochemical anodization process using an organic electrolyte in which lactic acid is added as an additive. In the electrolyte, highly ordered TiO2 nanotube layers with greater thickness of 12 μm, inner diameter of approx. 90 nm and outer diameter of approx. 170 nm are successfully obtained. Doping of Fe, S, and Fe-S via simple wet impregnation method substituted Ti and O sites with Fe and S, which leads to enhance the rate performance at high discharge C-rates. Discharge capacities of TiO2 tubes increased from 0.13 mAh cm−2(bare) to 0.28 mAh cm−2 for Fe-S doped TiO2 at 0.5 C after 100 cycles with exceptional capacity retention of 85 % after 100 cycles. Owing to the enhancement of thermodynamic and kinetic properties by doping of Fe-S, Li-diffusion increased resulting in remarkable discharge capacities of 0.27 mAh cm−2 and 0.16 mAh cm−2 at 10 C, and 30 C, respectively.

Author(s):  
Suriyakumar Dasarathan ◽  
Mukarram Ali ◽  
Tai-Jong Jung ◽  
Junghwan Sung ◽  
Yoon-Cheol Ha ◽  
...  

Vertically aligned Fe, S, and Fe-S doped anatase TiO2 nanotube arrays are prepared by electrochemical anodization process using an organic electrolyte in which lactic acid is added as an additive. In the electrolyte, nanotube layers of greater length (12 μm) and high order with inner diameter of approx. 90 nm and outer diameter of approx. 170 nm are achieved. Doping of Fe, S, and Fe-S via simple wet impregnation method substituted Ti and O sites with Fe and S, which leads to enhance the rate performance at high discharge current densities. Discharge capacities of TiO2 tubes increased from 82 mAh g-1 (bare) to 165 mAh g-1 for Fe-S doped TiO2 at high current densities of 0.3 mAcm-2 after 100 cycles with exceptional capacity retention of 85% after 100 cycles. Owing to the enhancement of thermodynamic and kinetic properties by doping of Fe-S, Li-diffusion increas2ed resulting in remarkable discharge capacities of 143 mAh g-1 and 89 mAh g-1 at a current density of 7.4 mA cm-2 and 19 mA cm-2, respectively.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 510
Author(s):  
Wangzhu Cao ◽  
Kunfeng Chen ◽  
Dongfeng Xue

Nanoscale engineering of regular structured materials is immensely demanded in various scientific areas. In this work, vertically oriented TiO2 nanotube arrays were grown by self-organizing electrochemical anodization. The effects of different fluoride ion concentrations (0.2 and 0.5 wt% NH4F) and different anodization times (2, 5, 10 and 20 h) on the morphology of nanotubes were systematically studied in an organic electrolyte (glycol). The growth mechanisms of amorphous and anatase TiO2 nanotubes were also studied. Under optimized conditions, we obtained TiO2 nanotubes with tube diameters of 70–160 nm and tube lengths of 6.5–45 μm. Serving as free-standing and binder-free electrodes, the kinetic, capacity, and stability performances of TiO2 nanotubes were tested as lithium-ion battery anodes. This work provides a facile strategy for constructing self-organized materials with optimized functionalities for applications.


Nanoscale ◽  
2015 ◽  
Vol 7 (39) ◽  
pp. 16282-16289 ◽  
Author(s):  
Jingyang Su ◽  
Ping Geng ◽  
Xinyong Li ◽  
Qidong Zhao ◽  
Xie Quan ◽  
...  

Novel phosphorus-doped graphitic-carbon nitride (P-C3N4) modified vertically aligned TiO2 nanotube arrays (NTs) were designed and synthesized.


2020 ◽  
Vol 32 (7) ◽  
pp. 1543-1548
Author(s):  
SLAMET ◽  
BOY M. BACHTIAR ◽  
PRASWASTI P.D.K. WULAN ◽  
BILLY APRIANTO ◽  
MUHAMMAD IBADURROHMAN

Modification of Ti-6Al-4V through electrochemical anodization method has been investigated on the purpose of generating TiO2 nanotube arrays (TiNTAs) on the surface of Ti-6Al-4V films. The as-anodized samples were calcined in an atmospheric furnace at various temperatures, in the range of 500-800 ºC. The evaluation of biofilm inhibition was performed by an in vitro method with Streptococcus mutans as a bacterium model. FE-SEM imaging confirmed the successful formation of TiO2 nanotube arrays while XRD results implied a phase transformation from anatase to rutile when the calcination temperature was around 600-650 ºC with average crystallite size of 18 nm. Calcination temperature is one of determining factors in the adjustment of crystallinity and morphology of TiO2, which in turn affects its capability to suppress biofilm formation. This study revealed that the best sample for biofilm inhibition was calcined at 600 ºC with a crystallite phase of mostly anatase. This sample managed to improve antibacterial activity of up to five times as compared to the unmodified Ti-6Al-4V. The output of this study is expected to give some insight on a promising alternative for preventing the formation of harmful biofilm on dental implants.


2019 ◽  
Vol 11 (25) ◽  
pp. 3221-3229 ◽  
Author(s):  
Fatemeh Bakhnooh ◽  
Majid Arvand ◽  
Shiva Hemmati

In this research, we aim to design a simple and effective photoelectrochemical sensor using the heterostructure of a mixed metal oxide coated on the surface of vertically aligned titanium dioxide nanotube arrays.


Sign in / Sign up

Export Citation Format

Share Document