scholarly journals Effect of Point Defects on Electronic Structure of Monolayer GeS

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2960
Author(s):  
Hyeong-Kyu Choi ◽  
Janghwan Cha ◽  
Chang-Gyu Choi ◽  
Junghwan Kim ◽  
Suklyun Hong

Using density functional theory calculations, atomic and electronic structure of defects in monolayer GeS were investigated by focusing on the effects of vacancies and substitutional atoms. We chose group IV or chalcogen elements as substitutional ones, which substitute for Ge or S in GeS. It was found that the bandgap of GeS with substitutional atoms is close to that of pristine GeS, while the bandgap of GeS with Ge or S vacancies was smaller than that of pristine GeS. In terms of formation energy, monolayer GeS with Ge vacancies is more stable than that with S vacancies, and notably GeS with Ge substituted with Sn is most favorable within the range of chemical potential considered. Defects affect the piezoelectric properties depending on vacancies or substitutional atoms. Especially, GeS with substitutional atoms has almost the same piezoelectric stress coefficients eij as pristine GeS while having lower piezoelectric strain coefficients dij  but still much higher than other 2D materials. It is therefore concluded that Sn can effectively heal Ge vacancy in GeS, keeping high piezoelectric strain coefficients.

RSC Advances ◽  
2020 ◽  
Vol 10 (25) ◽  
pp. 14714-14719
Author(s):  
T. K. Bijoy ◽  
P. Murugan ◽  
Vijay Kumar

We report the results of density functional theory calculations on the atomic and electronic structure of solids formed by assembling A2B2PN (A = Ge and Sn, B = Cl, Br, and I) inorganic double helices.


Computation ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 58
Author(s):  
Anastasia A. Shakirova ◽  
Felix N. Tomilin ◽  
Vladimir A. Pomogaev ◽  
Natalia G. Vnukova ◽  
Grigory N. Churilov ◽  
...  

Gd endohedral complexes of C82 fullerenols were synthesized and mass spectrometry analysis of their composition was carried out. It was established that the synthesis yields a series of fullerenols Gd@C82Ox(OH)y (x = 0, 3; y = 8, 16, 24, 36, 44). The atomic and electronic structure and properties of the synthesized fullerenols were investigated using the density functional theory calculations. It was shown that the presence of endohedral gadolinium increases the reactivity of fullerenols. It is proposed that the high-spin endohedral fullerenols are promising candidates for application in magnetic resonance imaging.


Author(s):  
Abhishek Kumar Adak ◽  
Devina Sharma ◽  
Shobhana Narasimhan

Abstract We have performed density functional theory calculations to study blue phosphorene and black phosphorene on metal substrates. The substrates considered are the (111) and (110) surfaces of Al, Cu, Ag, Ir, Pd, Pt and Au and the (0001) and (10$\bar{1}$0) surfaces of Zr and Sc. The formation energy $E_{\rm F}$ is negative (energetically favorable) for all 36 combinations of overlayer and substrate. By comparing values of $\Delta{\Omega}$, the change in free energy per unit area, as well as the overlayer-substrate binding energy $E_{\rm b}$, we identify that Ag(111), Al(110), Cu(111), Cu(110) and possibly Au(110) may be especially suitable substrates for the synthesis and subsequent exfoliation of blue phosphorene, and the Ag(110) and Al(111) substrates for the synthesis of black phosphorene. However, these conclusions are drawn assuming the source of P atoms is bulk phosphorus, and can alter upon changing synthesis conditions (chemical potential of phosphorus). Thus, when the source of phosphorus atoms is P$_4$, blue phosphorene is favored only over Pt(111). We find that for all combinations of overlayer and substrate, the charge transfer per bond can be captured by the universal descriptor $\mathcal{D} = \Delta \chi/\Delta \mathcal{R}$, where $\Delta \chi$ and $\Delta \mathcal{R}$ are, respectively, the differences in electronegativity and atomic size between phosphorus and the substrate metal.


1999 ◽  
Vol 103 (48) ◽  
pp. 10627-10631 ◽  
Author(s):  
Christopher V. Grant ◽  
William Cope ◽  
James A. Ball ◽  
Guenter G. Maresch ◽  
Betty J. Gaffney ◽  
...  

2019 ◽  
Vol 21 (21) ◽  
pp. 11168-11174 ◽  
Author(s):  
Wiliam Ferreira da Cunha ◽  
Ramiro Marcelo dos Santos ◽  
Rafael Timóteo de Sousa Júnior ◽  
Renato Batista Santos ◽  
Geraldo Magela e Silva ◽  
...  

The structural and electronic properties of MoS2 sheets doped with carbon line domains are theoretically investigated through density functional theory calculations.


Sign in / Sign up

Export Citation Format

Share Document