scholarly journals Photoelectromagnetic Effect Induced by Terahertz Laser Radiation in Topological Crystalline Insulators Pb1−xSnxTe

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3207
Author(s):  
Alexandra V. Galeeva ◽  
Dmitry A. Belov ◽  
Aleksei S. Kazakov ◽  
Anton V. Ikonnikov ◽  
Alexey I. Artamkin ◽  
...  

Topological crystalline insulators form a class of semiconductors for which surface electron states with the Dirac dispersion relation are formed on surfaces with a certain crystallographic orientation. Pb1−xSnxTe alloys belong to the topological crystalline phase when the SnTe content x exceeds 0.35, while they are in the trivial phase at x < 0.35. For the surface crystallographic orientation (111), the appearance of topologically nontrivial surface states is expected. We studied the photoelectromagnetic (PEM) effect induced by laser terahertz radiation in Pb1−xSnxTe films in the composition range x = (0.11–0.44), with the (111) surface crystallographic orientation. It was found that in the trivial phase, the amplitude of the PEM effect is determined by the power of the incident radiation, while in the topological phase, the amplitude is proportional to the flux of laser radiation quanta. A possible mechanism responsible for the effect observed presumes damping of the thermalization rate of photoexcited electrons in the topological phase and, consequently, prevailing of electron diffusion, compared with energy relaxation.

The development with time of the excitation of a transition between two atomic or molecular energy levels under the influence of monochromatic laser radiation is examined under conditions of strictly inhomogeneous line broadening due to such causes as doppler shift arising from translational velocity. The ratio of the number of molecules, N 2 , in an excited state to the total number, N , is calculated for various ratios of the intensity parameter β ═ E 0 μ / ħ to the half line-width ∆ , where E 0 is the amplitude of the electric field in the incident radiation and is the dipole moment matrix element for the transition. Excitation functions obtained in a previous paper (I) for various values of the ratio γ/β , where γ is the half line-width in the absence of inhomo­geneous broadening, are used to obtain the variation of N 2 / N with time under conditions of mixed broadening for various values of the ratio γ/∆ and γ/β , when the exciting radiation is in exact resonance with the central frequency of the transition.


2018 ◽  
Vol 8 (3) ◽  
Author(s):  
Eslam Khalaf ◽  
Hoi Chun Po ◽  
Ashvin Vishwanath ◽  
Haruki Watanabe

Author(s):  
Shahram Yalameha ◽  
Zahra Nourbakhsh ◽  
Daryoosh Vashaee

Abstract We report the topological phase, thermal, and electrical properties of bialkali bismuthide compounds (Na,K)2RbBi, as yet hypothetical. The topological phase transitions of these compounds under hydrostatic pressure are investigated. The calculated topological surface states and Z2 topological index confirm the nontrivial topological phase. The electronic properties and transport coefficients are obtained using the density functional theory combined with the Boltzmann transport equation. The relaxation times are determined using the deformation potential theory to calculate the electronic thermal and electrical conductivity. The calculated mode Grüneisen parameters are substantial, indicating strong anharmonic acoustic phonons scattering, which results in an exceptionally low lattice thermal conductivity. These compounds also have a favorable thermoelectric power factor leading to a relatively flat p-type figure-of-merit over a broad temperature range. Furthermore, the mechanical properties and phonon band dispersions show that these structures are mechanically and dynamically stable. Therefore, they offer excellent candidates for practical applications over a wide range of temperatures.


2011 ◽  
Vol 83 (20) ◽  
Author(s):  
H. Guo ◽  
K. Sugawara ◽  
A. Takayama ◽  
S. Souma ◽  
T. Sato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document