scholarly journals Coaxial Electrospinning Construction Si@C Core–Shell Nanofibers for Advanced Flexible Lithium-Ion Batteries

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3454
Author(s):  
Li Zeng ◽  
Hongxue Xi ◽  
Xingang Liu ◽  
Chuhong Zhang

Silicon (Si) is expected to be a high-energy anode for the next generation of lithium-ion batteries (LIBs). However, the large volume change along with the severe capacity degradation during the cycling process is still a barrier for its practical application. Herein, we successfully construct flexible silicon/carbon nanofibers with a core–shell structure via a facile coaxial electrospinning technique. The resultant Si@C nanofibers (Si@C NFs) are composed of a hard carbon shell and the Si-embedded amorphous carbon core framework demonstrates an initial reversible capacity of 1162.8 mAh g−1 at 0.1 A g−1 with a retained capacity of 762.0 mAh g−1 after 100 cycles. In addition, flexible LIBs assembled with Si@C NFs were hardly impacted under an extreme bending state, illustrating excellent electrochemical performance. The impressive performances are attributed to the high electric conductivity and structural stability of the porous carbon fibers with a hierarchical porous structure, indicating that the novel Si@C NFs fabricated using this electrospinning technique have great potential for advanced flexible energy storage.

2015 ◽  
Vol 3 (13) ◽  
pp. 7112-7120 ◽  
Author(s):  
Haoran Zhang ◽  
Xianying Qin ◽  
Junxiong Wu ◽  
Yan-Bing He ◽  
Hongda Du ◽  
...  

Core–shell silicon/carbon (Si/C) fibers with an internal honeycomb-like carbon framework are prepared based on the coaxial electrospinning technique.


2016 ◽  
Vol 328 ◽  
pp. 527-535 ◽  
Author(s):  
Julien Sourice ◽  
Arnaud Bordes ◽  
Adrien Boulineau ◽  
John P. Alper ◽  
Sylvain Franger ◽  
...  

2017 ◽  
Vol 29 (12) ◽  
pp. 5048-5052 ◽  
Author(s):  
Do-Wook Jun ◽  
Chong S. Yoon ◽  
Un-Hyuck Kim ◽  
Yang-Kook Sun

Ionics ◽  
2017 ◽  
Vol 24 (5) ◽  
pp. 1293-1304 ◽  
Author(s):  
Chaopu Tan ◽  
Hongjun Luo ◽  
Ke Du ◽  
Dianhua Huang ◽  
Kaihua Hu ◽  
...  

Author(s):  
Yun Zhao ◽  
Yanxi Li ◽  
Zheng Liang

Though the energy density of lithium-ion batteries continues to increase, safety issues related with the internal short-circuit and the resulting combustion of highly flammable electrolyte impede the further development of lithium-ion batteries. It has been well-accepted that a thermal stable separator is important to postpone the entire battery short-circuit and thermal-runaway. Traditional methods to improve the thermal stability of separators includes surface modification and/or developing alternate material systems for separators which may always affect the battery performance negatively. Herein, a thermostable and shrink-free separator with little compromise in battery performance is prepared by coaxial electrospinning and tested. The separator consists of core-shell fiber networks where poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) layer serves as shell and polyacrylonitrile (PAN) as the core. This core-shell fiber network exhibits little or even no shrinking/melting at elevated temperature over 250 °C. Meanwhile, it shows excellent electrolyte wettability and can take large amount of liquid electrolyte three times more than that of conventional Celgard 2400 separator. In addition, the half-cell using LiNi1/3Co1/3Mn1/3O2 as cathode and the aforementioned electrospun core-shell fiber network as separator demonstrates superior electrochemical behavior, stably cycling for 200 cycles at 1 C with a reversible capacity of 130 mAh g-1 and little capacity decay.


2019 ◽  
Vol 7 (21) ◽  
pp. 13120-13129 ◽  
Author(s):  
Min Chen ◽  
Xiaojing Jin ◽  
Zhi Chen ◽  
Yaotang Zhong ◽  
Youhao Liao ◽  
...  

Cross-like hierarchical porous Li1.167Mn0.583Ni0.250O2 with (110)-oriented crystal planes (CHP-LMNO) is successfully developed by a morphology-conserved solid-state Li implantation method.


RSC Advances ◽  
2015 ◽  
Vol 5 (30) ◽  
pp. 23548-23555 ◽  
Author(s):  
Seok-Hwan Park ◽  
Wan-Jin Lee

The CNF/NiO core–shell nanocables are prepared by electrospinning and electrophoretic deposition. The CNF/NiO nanocables deliver a high reversible capacity of 825 mA h g−1 at 200 mA g−1 after 50 charge–discharge cycles without showing obvious decay.


Sign in / Sign up

Export Citation Format

Share Document