scholarly journals Antiviral Activities of High Energy E-Beam Induced Copper Nanoparticles against H1N1 Influenza Virus

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 268
Author(s):  
Taesung Ha ◽  
Thi Tuyet Mai Pham ◽  
Mikyung Kim ◽  
Yeon-Hee Kim ◽  
Ji-Hyun Park ◽  
...  

The pandemic outbreak of COVID-19 in the year of 2020 that drastically changed everyone’s life has raised the urgent and intense need for the development of more efficacious antiviral material. This study was designed to develop copper nanoparticles (Cu NPs) as an antiviral agent and to validate the antiviral activities of developed copper NP. The Cu NPs were synthesized using a high energy electron beam, and the characteristic morphologies and antiviral activities of Cu NPs were evaluated. We found that Cu NPs are of spherical shape and uniformly distributed, with a diameter of around 100 nm, as opposed to the irregular shape of commercially available copper microparticles (Cu MPs). An X-ray diffraction analysis showed the presence of Cu and no copper oxide II and I in the Cu NPs. A virus inactivation assay revealed no visible viral DNA after 10- and 30-min treatment of H1N1 virus with the Cu NPs. The infectivity of the Cu NPs-treated H1N1 virus significantly decreased compared with that of the Cu MPs-treated H1N1 virus. The viability of A549 bronchial and Madin-Darby Canine Kidney (MDCK) cells infected with Cu NPs-treated H1N1 was significantly higher than those infected with Cu MPs-treated H1N1 virus. We also found cells infected with Cu NPs-treated H1N1 virus exhibited a markedly decreased presence of virus nucleoprotein (NuP), an influenza virus-specific structural protein, compared with cells infected with Cu MPs-treated H1N1 virus. Taken together, our study shows that Cu NPs are a more effective and efficacious antiviral agent compared with Cu MPs and offer promising opportunities for the prevention of devastatingly infectious diseases.

1999 ◽  
Vol 27 (01) ◽  
pp. 53-62 ◽  
Author(s):  
Makiko Kobayashi ◽  
Stephen M. Davis ◽  
Tokuichiro Utsunomiya ◽  
Richard B. Pollard ◽  
Fujio Suzuki

Gingyo-san is a crude drug containing extracts from 7 medicinal plants and fermented soybeans in a specific ratio. It has been used clinically in China as a therapeutic agent for the common cold. In the present study, we examined the antiviral effect of this agent on influenza virus infection in mice. Gingyo-san and its components were administered orally to mice 1 day before, then 1 and 4, days after the inhalation of a mouse-adopted strain of influenza A2(H2N2) virus. After infection with a 10 LD50of the virus, 100% of mice treated with 10 mg/kg of the agent survived as compared with a 0% survival of control mice treated with saline. Also, the mean survival days were ncreased and consolidation scores were decreased in treated mice as compared with those of control mice. Two components contained in the agent, extracts from Glycyrrhizae radix and Arctii fructus, expressed antiviral activities in mice infected with influenza virus. However, in vitro growth of influenza virus in MDCK cells or viability of the virus was not affected by these extracts or Gingyo-san. From these results Gingyo-san was shown to be an antiviral agent in mice infected with a lethal amount of a mouse-adopted strain of influenza A2virus.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 793
Author(s):  
Ying Huang ◽  
Monique S. França ◽  
James D. Allen ◽  
Hua Shi ◽  
Ted M. Ross

Vaccination is the best way to prevent influenza virus infections, but the diversity of antigenically distinct isolates is a persistent challenge for vaccine development. In order to conquer the antigenic variability and improve influenza virus vaccine efficacy, our research group has developed computationally optimized broadly reactive antigens (COBRAs) in the form of recombinant hemagglutinins (rHAs) to elicit broader immune responses. However, previous COBRA H1N1 vaccines do not elicit immune responses that neutralize H1N1 virus strains in circulation during the recent years. In order to update our COBRA vaccine, two new candidate COBRA HA vaccines, Y2 and Y4, were generated using a new seasonal-based COBRA methodology derived from H1N1 isolates that circulated during 2013–2019. In this study, the effectiveness of COBRA Y2 and Y4 vaccines were evaluated in mice, and the elicited immune responses were compared to those generated by historical H1 COBRA HA and wild-type H1N1 HA vaccines. Mice vaccinated with the next generation COBRA HA vaccines effectively protected against morbidity and mortality after infection with H1N1 influenza viruses. The antibodies elicited by the COBRA HA vaccines were highly cross-reactive with influenza A (H1N1) pdm09-like viruses isolated from 2009 to 2021, especially with the most recent circulating viruses from 2019 to 2021. Furthermore, viral loads in lungs of mice vaccinated with Y2 and Y4 were dramatically reduced to low or undetectable levels, resulting in minimal lung injury compared to wild-type HA vaccines following H1N1 influenza virus infection.


2012 ◽  
Vol 56 (12) ◽  
pp. 6328-6333 ◽  
Author(s):  
Donald F. Smee ◽  
Mark von Itzstein ◽  
Beenu Bhatt ◽  
E. Bart Tarbet

ABSTRACTCompounds lacking oral activity may be delivered intranasally to treat influenza virus infections in mice. However, intranasal treatments greatly enhance the virulence of such virus infections. This can be partially compensated for by giving reduced virus challenge doses. These can be 100- to 1,000-fold lower than infections without such treatment and still cause equivalent mortality. We found that intranasal liquid treatments facilitate virus production (probably through enhanced virus spread) and that lung pneumonia was delayed by only 2 days relative to a 1,000-fold higher virus challenge dose not accompanied by intranasal treatments. In one study, zanamivir was 90 to 100% effective at 10 mg/kg/day by oral, intraperitoneal, and intramuscular routes against influenza A/California/04/2009 (H1N1) virus in mice. However, the same compound administered intranasally at 20 mg/kg/day for 5 days gave no protection from death although the time to death was significantly delayed. A related compound, Neu5Ac2en (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid), was ineffective at 100 mg/kg/day. Intranasal zanamivir and Neu5Ac2en were 70 to 100% protective against influenza A/NWS/33 (H1N1) virus infections at 0.1 to 10 and 30 to 100 mg/kg/day, respectively. Somewhat more difficult to treat was A/Victoria/3/75 virus that required 10 mg/kg/day of zanamivir to achieve full protection. These results illustrate that treatment of influenza virus infections by the intranasal route requires consideration of both virus challenge dose and virus strain in order to avoid compromising the effectiveness of a potentially useful antiviral agent. In addition, the intranasal treatments were shown to facilitate virus replication and promote lung pathology.


2016 ◽  
Vol 90 (9) ◽  
pp. 4637-4646 ◽  
Author(s):  
Kanyarat Ruangrung ◽  
Ornpreya Suptawiwat ◽  
Kittipong Maneechotesuwan ◽  
Chompunuch Boonarkart ◽  
Warunya Chakritbudsabong ◽  
...  

ABSTRACTHuman bronchoalveolar fluid is known to have anti-influenza activity. It is believed to be a frontline innate defense against the virus. Several antiviral factors, including surfactant protein D, are believed to contribute to the activity. The 2009 pandemic H1N1 influenza virus was previously shown to be less sensitive to surfactant protein D. Nevertheless, whether different influenza virus strains have different sensitivities to the overall anti-influenza activity of human bronchoalveolar fluid was not known. We compared the sensitivities of 2009 pandemic H1N1, seasonal H1N1, and seasonal H3N2 influenza virus strains to inhibition by human bronchoalveolar lavage (BAL) fluid. The pandemic and seasonal H1N1 strains showed lower sensitivity to human BAL fluid than the H3N2 strains. The BAL fluid anti-influenza activity could be enhanced by oseltamivir, indicating that the viral neuraminidase (NA) activity could provide resistance to the antiviral defense. In accordance with this finding, the BAL fluid anti-influenza activity was found to be sensitive to sialidase. The oseltamivir resistance mutation H275Y rendered the pandemic H1N1 virus but not the seasonal H1N1 virus more sensitive to BAL fluid. Since only the seasonal H1N1 but not the pandemic H1N1 had compensatory mutations that allowed oseltamivir-resistant strains to maintain NA enzymatic activity and transmission fitness, the resistance to BAL fluid of the drug-resistant seasonal H1N1 virus might play a role in viral fitness.IMPORTANCEHuman airway secretion contains anti-influenza activity. Different influenza strains may vary in their susceptibilities to this antiviral activity. Here we show that the 2009 pandemic and seasonal H1N1 influenza viruses were less sensitive to human bronchoalveolar lavage (BAL) fluid than H3N2 seasonal influenza virus. The resistance to the pulmonary innate antiviral activity of the pandemic virus was determined by its neuraminidase (NA) gene, and it was shown that the NA inhibitor resistance mutation H275Y abolished this resistance of the pandemic H1N1 but not the seasonal H1N1 virus, which had compensatory mutations that maintained the fitness of drug-resistant strains. Therefore, the innate respiratory tract defense may be a barrier against NA inhibitor-resistant mutants, and evasion of this defense may play a role in the emergence and spread of drug-resistant strains.


2010 ◽  
Vol 17 (12) ◽  
pp. 1998-2006 ◽  
Author(s):  
Ali H. Ellebedy ◽  
Thomas P. Fabrizio ◽  
Ghazi Kayali ◽  
Thomas H. Oguin ◽  
Scott A. Brown ◽  
...  

ABSTRACT Human influenza pandemics occur when influenza viruses to which the population has little or no immunity emerge and acquire the ability to achieve human-to-human transmission. In April 2009, cases of a novel H1N1 influenza virus in children in the southwestern United States were reported. It was retrospectively shown that these cases represented the spread of this virus from an ongoing outbreak in Mexico. The emergence of the pandemic led to a number of national vaccination programs. Surprisingly, early human clinical trial data have shown that a single dose of nonadjuvanted pandemic influenza A (H1N1) 2009 monovalent inactivated vaccine (pMIV) has led to a seroprotective response in a majority of individuals, despite earlier studies showing a lack of cross-reactivity between seasonal and pandemic H1N1 viruses. Here we show that previous exposure to a contemporary seasonal H1N1 influenza virus and to a lesser degree a seasonal influenza virus trivalent inactivated vaccine is able to prime for a higher antibody response after a subsequent dose of pMIV in ferrets. The more protective response was partially dependent on the presence of CD8+ cells. Two doses of pMIV were also able to induce a detectable antibody response that provided protection from subsequent challenge. These data show that previous infection with seasonal H1N1 influenza viruses likely explains the requirement for only a single dose of pMIV in adults and that vaccination campaigns with the current pandemic influenza vaccines should reduce viral burden and disease severity in humans.


2015 ◽  
Vol 90 (2) ◽  
pp. 1116-1128 ◽  
Author(s):  
Greg A. Kirchenbaum ◽  
Donald M. Carter ◽  
Ted M. Ross

ABSTRACTBroadly reactive antibodies targeting the conserved hemagglutinin (HA) stalk region are elicited following sequential infection or vaccination with influenza viruses belonging to divergent subtypes and/or expressing antigenically distinct HA globular head domains. Here, we demonstrate, through the use of novel chimeric HA proteins and competitive binding assays, that sequential infection of ferrets with antigenically distinct seasonal H1N1 (sH1N1) influenza virus isolates induced an HA stalk-specific antibody response. Additionally, stalk-specific antibody titers were boosted following sequential infection with antigenically distinct sH1N1 isolates in spite of preexisting, cross-reactive, HA-specific antibody titers. Despite a decline in stalk-specific serum antibody titers, sequential sH1N1 influenza virus-infected ferrets were protected from challenge with a novel H1N1 influenza virus (A/California/07/2009), and these ferrets poorly transmitted the virus to naive contacts. Collectively, these findings indicate that HA stalk-specific antibodies are commonly elicited in ferrets following sequential infection with antigenically distinct sH1N1 influenza virus isolates lacking HA receptor-binding site cross-reactivity and can protect ferrets against a pathogenic novel H1N1 virus.IMPORTANCEThe influenza virus hemagglutinin (HA) is a major target of the humoral immune response following infection and/or seasonal vaccination. While antibodies targeting the receptor-binding pocket of HA possess strong neutralization capacities, these antibodies are largely strain specific and do not confer protection against antigenic drift variant or novel HA subtype-expressing viruses. In contrast, antibodies targeting the conserved stalk region of HA exhibit broader reactivity among viruses within and among influenza virus subtypes. Here, we show that sequential infection of ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts the antibody responses directed at the HA stalk region. Moreover, ferrets possessing HA stalk-specific antibody were protected against novel H1N1 virus infection and did not transmit the virus to naive contacts.


Vaccine ◽  
2010 ◽  
Vol 28 (30) ◽  
pp. 4771-4776 ◽  
Author(s):  
Peter Pushko ◽  
Thomas Kort ◽  
Margret Nathan ◽  
Melissa B. Pearce ◽  
Gale Smith ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Lijuan Chen ◽  
Xin Yan ◽  
Qianlin Yan ◽  
Jiajun Fan ◽  
Hai Huang ◽  
...  

A new approach to treat infections of highly pathogenic influenza virus is to inhibit excessive innate immune response. JiuWei QiangHuo decoction has been used for centuries for the treatment of pulmonary disorders in China. In this study, we evaluated the anti-inflammatory activities of the modified JiuWei QiangHuo (MJWQH) decoction in the treatment of influenza A (H1N1) virus-induced severe pneumonia in mice. The results showed that MJWQH significantly increased the survival rate of H1N1-infected mice and suppressed the production of TNF-α, IL-1, IL-6, MCP-1, RANTES, and IFN-αon day 4 after infection. Moreover, oral administration of MJWQH efficiently inhibited virus replication and alleviated the severity of lung injuries. The results also showed that MJWQH may have potential therapeutic effect on severe lung injury induced by H1N1 virus by regulating the NF-κB pathway. Our study suggested that MJWQH might be an alternative therapy for the treatment of viral pneumonia.


Author(s):  
А.Г. Емельянова ◽  
М.В. Никифорова ◽  
Е.С. Дон ◽  
Н.Р. Махмудова ◽  
И.Н. Фалынскова ◽  
...  

Цель исследования - изучение возможного прямого влияния препарата «Анаферон детский» на жизненный цикл вируса гриппа А в процессе развития инфекции, а также дозозависимости противовирусного эффекта in vitro . Методика. Исследование противовирусной активности препарата «Анаферон детский» in vitro было проведено с использованием культуры клеток MDCK (Madin Darby canine kidney) и эталонных штаммов вируса гриппа A (H1N1) pdm09: A/California/07/09 и А/California/04/09, полученных от ВОЗ. Использовались методы оценки подавления Анафероном детским вирусной репликации (по результатам иммуноферментного анализа по определению экспрессии внутренних белков NP и M1 вируса гриппа А) и его влияние на ультраструктурные особенности морфогенеза вируса гриппа методом электронной микроскопии. В качестве положительного контроля был использован Озельтамивир карбоксилат в концентрации 10 мкМ. Для мониторинга валидности экспериментальной модели в работе использовали клетки, зараженные вирусом без добавления экспериментальных образцов (контроль вируса), а также интактные клетки (клеточный контроль). Результаты. В ходе исследования показан дозозависимый противовирусный эффект препарата «Анаферон детский» для 3 тестируемых разведений - 1/8, 1/12, 1/16. Методом электронной микроскопии показано, что применение препарата «Анаферон детский» при сравнении с контрольным образцом влияло на процесс почкования вирионов. Заключение. Впервые показана дозозависимость противовирусного действия препарата «Анаферон детский», а также подтверждена его эффективность в отношении двух штаммов вируса пандемического гриппа А/H1N1. Документировано, что применение препарата «Анаферон детский» нарушает жизненный цикл вируса гриппа А. Механизмы развития такого эффекта требуют дополнительного изучения, однако можно предположить их связь с ИФН-индуцирующими свойствами препарата «Анаферон детский», так как было показано, что в начале лечения вирусной инфекции препарат вызывает индукцию синтеза белков системы интерферонов. The aim of this study was to evaluate a possible direct effect of Anaferon for Children on the life cycle of influenza A virus during infection development and a dose response of the antiviral effect in vitro. Methods. The in vitro antiviral activity of Anaferon for Children was studied on cultured MDCK cells and reference strains of influenza virus A (H1N1) pdm09: A/California/07/09 and A/California/04/09, both from the WHO. Inhibition of viral replication by Anaferon for Children and its effect on ultrastructural features of the influenza morphogenesis were evaluated using electron microscopy. Results. The study demonstrated a dose dependence of Anaferon for Children antiviral activity for three dilutions - 1/8, 1/12, and 1/16. Anaferon for Children affected the process of virion budding as compared to placebo. Conclusion. The study showed that the anti-influenza action of Anaferon for Children was dose-dependent and confirmed that this drug was effective against two strains of pandemic A/H1N1 influenza. Furthermore, Anaferon for children disrupted one or several stages of the virus life cycle.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S371-S371 ◽  
Author(s):  
Mitsutaka Kitano ◽  
Atsuko Yamamoto ◽  
Takeshi Noshi ◽  
Makoto Kawai ◽  
Ryu Yoshida ◽  
...  

Abstract Background S-033447, an active form of orally available prodrug S-033188, is a novel small molecule inhibitor of cap-dependent endonuclease that is essential for influenza virus transcription and replication. In this study, we evaluated the inhibitory effect of S-033188 in combination with neuraminidase inhibitors on the replication of influenza A/H1N1 virus in cultured cells. Methods The inhibitory effects of S-033447 in combination with NA inhibitors on the cytopathic effect of A/PR/8/34 strain in Madin–Darby canine kidney cells cultured for 2 days were tested and EC50 were determined. The combination index (CI), which were obtained when S-033188 and NA inhibitor were added at the closest ratio of each EC50 value, were used for the evaluation of these combinational effects (Table 1). CI values were calculated by the Chou and Talalay method, in which combinational effect were determined according to the criteria as follows: synergistic if CI ≤ 0.8, additive if 0.8 < CI < 1.2, and antagonistic if CI ≥ 1.2. CI = (DA/A + B)/DA + (DB/A + B)/DB + (DA/A + B × DB/A + B)/(DA × DB) DA: the EC50 of S-033447 DB: the EC50 of NA inhibitor DA/A + B: the concentration of S-033447 giving 50% inhibition in combination with NA inhibitor at the closest ratio of each EC50 value DB/A + B: the concentration of NA inhibitor giving 50% inhibition in combination with S-033447 at the closest ratio of each EC50 value Results All CI values were lower than 0.8, under the condition that both S-033447 and NA inhibitor (oseltamivir acid, zanamivir hydrate, laninamivir, or peramivir trihydrate) were added at the closest ratio of each EC50 value (Table 1). Conclusion S-033447 in combination with oseltamivir acid, zanamivir hydrate, laninamivir, or peramivir trihydrate synergistically inhibited the replication of influenza A/H1N1 virus in MDCK cells. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document