scholarly journals In Situ Synthesis of a Stable Fe3O4@Cellulose Nanocomposite for Efficient Catalytic Degradation of Methylene Blue

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 275 ◽  
Author(s):  
Quan Lu ◽  
Yanjuan Zhang ◽  
Huayu Hu ◽  
Wen Wang ◽  
Zuqiang Huang ◽  
...  

To rapidly obtain a stable Fe3O4@cellulose heterogeneous Fenton catalyst, a novel in situ chemical co-precipitation method was developed. Compared with mechanical activation (MA)-pretreated cellulose (MAC), MA + FeCl3 (MAFC)-pretreated cellulose (MAFCC) was more easily dissolved and uniformly distributed in NaOH/urea solvent. MAFCC and MAC solutions were used as precipitators to prepare Fe3O4@MAFCC and Fe3O4@MAC nanocomposites, respectively. MAFCC showed stronger interaction and more uniform combination with Fe3O4 nanoparticles than MAC, implying that MAFC pretreatment enhanced the accessibility, reactivity, and dissolving capacity of cellulose thus, provided reactive sites for the in situ growth of Fe3O4 nanoparticles on the regenerated cellulose. Additionally, the catalytic performance of Fe3O4@MAFCC nanocomposite was evaluated by using for catalytic degradation of methylene blue (MB), and Fe3O4@MAC nanocomposite and Fe3O4 nanoparticles were used for comparative studies. Fe3O4@MAFCC nanocomposite exhibited superior catalytic activity for the degradation and mineralization of MB in practical applications. After ten cycles, the structure of Fe3O4@MAFCC nanocomposite was not significantly changed owing to the strong interaction between MAFCC and Fe3O4 nanoparticles. This study provides a green pathway to the fabrication of a stable nanocomposite catalyst with high catalytic performance and reusability for the degradation of organic pollutants.

2016 ◽  
Vol 73 (11) ◽  
pp. 2815-2823 ◽  
Author(s):  
Yiming Zha ◽  
Ziqing Zhou ◽  
Haibo He ◽  
Tianlin Wang ◽  
Liqiang Luo

Nanoscale zero-valent iron (nZVI) incorporated with nanomagnetic diatomite (DE) composite material was prepared for catalytic degradation of methylene blue (MB) in heterogeneous Fenton system. The material was constructed by two facile steps: Fe3O4 magnetic nanoparticles were supported on DE by chemical co-precipitation method, after which nZVI was incorporated into magnetic DE by liquid-phase chemical reduction strategy. The as-prepared catalyst was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, magnetic properties measurement and nitrogen adsorption–desorption isotherm measurement. The novel nZVI@Fe3O4-diatomite nanocomposites showed a distinct catalytic activity and a desirable effect for degradation of MB. MB could be completely decolorized within 8 min and the removal efficiency of total organic carbon could reach to 90% after reaction for 1 h.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4021
Author(s):  
Andrés Esteban Cerón Cerón Cortés ◽  
Anja Dosen ◽  
Victoria L. Blair ◽  
Michel B. Johnson ◽  
Mary Anne White ◽  
...  

Materials from theA2M3O12 family are known for their extensive chemical versatility while preserving the polyhedral-corner-shared orthorhombic crystal system, as well as for their consequent unusual thermal expansion, varying from negative and near-zero to slightly positive. The rarest are near-zero thermal expansion materials, which are of paramount importance in thermal shock resistance applications. Ceramic materials with chemistry Al2−xInxW3O12 (x = 0.2–1.0) were synthesized using a modified reverse-strike co-precipitation method and prepared into solid specimens using traditional ceramic sintering. The resulting materials were characterized by X-ray powder diffraction (ambient and in situ high temperatures), differential scanning calorimetry and dilatometry to delineate thermal expansion, phase transitions and crystal structures. It was found that the x = 0.2 composition had the lowest thermal expansion, 1.88 × 10−6 K−1, which was still higher than the end member Al2W3O12 for the chemical series. Furthermore, the AlInW3O12 was monoclinic phase at room temperature and transformed to the orthorhombic form at ca. 200 °C, in contrast with previous reports. Interestingly, the x = 0.2, x = 0.4 and x = 0.7 materials did not exhibit the expected orthorhombic-to-monoclinic phase transition as observed for the other compositions, and hence did not follow the expected Vegard-like relationship associated with the electronegativity rule. Overall, compositions within the Al2−xInxW3O12 family should not be considered candidates for high thermal shock applications that would require near-zero thermal expansion properties.


Author(s):  
Buyan-Ulzii Battulga ◽  
Tungalagtamir Bold ◽  
Enkhsaruul Byambajav

AbstractNi based catalysts supported on γ-Al2O3 that was unpromoted (Ni/γAl2O3) or promoted (Ni–Fe/γAl2O3, Ni–Co/γAl2O3, and Ni–Fe–Co/γAl2O3) were prepared using by the impregnation – co-precipitation method. Their catalytic performances for CO methanation were studied at 3 atm with a weight hourly space velocity (WHSV) of 3000 ml/g/h of syngas with a molar ratio of H2/CO = 3 and in the temperature range between 130 and 350 °C. All promoters could improve nickel distribution, and decreased its particle sizes. It was found that the Ni–Co/γAl2O3 catalyst showed the highest catalytic performance for CO methanation in a low temperature range (<250 °C). The temperatures for the 20% CO conversion over Ni–Co/γAl2O3, Ni–Fe/γAl2O3, Ni–Fe–Co/γAl2O3 and Ni/γAl2O3 catalysts were 205, 253, 263 and 270 °C, respectively. The improved catalyst distribution by the addition of cobalt promoter caused the formation of β type nickel species which had an appropriate interacting strength with alumina support in the Ni–Co/γAl2O3. Though an addition of iron promoter improved catalyst distribution, the methane selectivity was lowered due to acceleration of both CO methanation and WGS reaction with the Ni–Fe/γAl2O3. Moreover, it was found that there was no synergetic effect from the binary Fe–Co promotors in the Ni–Fe–Co/γAl2O3 on catalytic activity for CO methanation.


2017 ◽  
Vol 170 ◽  
pp. 72-79 ◽  
Author(s):  
Mehnaz Rashid ◽  
Mohammad Abdul Gafur ◽  
Mostafa Kaiyum Sharafat ◽  
Hideto Minami ◽  
Mohd Abdul Jalil Miah ◽  
...  

2008 ◽  
Vol 273-276 ◽  
pp. 22-27 ◽  
Author(s):  
Ali Shokuhfar ◽  
S. Alibeigi ◽  
Mohammad Reza Vaezi ◽  
Sayed Khatiboleslam Sadrnezhaad

Magnetite (Fe3O4) nanoparticles were prepared simply by the reverse co-precipitation method from the solution of ferrous/ferric mixed salt in the presence of cationic surfactant (cetyl trimethyl ammonium bromide, CTAB) and nonionic surfactant (Polyethylene glycol, PEG) in two concentrations. Meanwhile, Fe3O4 nanoparticles without surfactant are also synthesized under the same condition for comparison. In addition via the reverse co-precipitation method, the pH which is an important factor in synthesis of magnetite was controlled at high values easily. The experimental results reveal that addition of surfactants affected on the size and morphology of the nanoparticles based on the X-ray diffraction (XRD) and scanning electron microscope (SEM) characterizations.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 618 ◽  
Author(s):  
Hynek Beneš ◽  
Jana Kredatusová ◽  
Jakub Peter ◽  
Sébastien Livi ◽  
Sonia Bujok ◽  
...  

Currently, highly demanded biodegradable or bio-sourced plastics exhibit inherent drawbacks due to their limited processability and end-use properties (barrier, mechanical, etc.). To overcome all of these shortcomings, the incorporation of lamellar inorganic particles, such as layered double hydroxides (LDH) seems to be appropriate. However, LDH delamination and homogenous dispersion in a polymer matrix without use of harmful solvents, remains a challenging issue, which explains why LDH-based polymer nanocomposites have not been scaled-up yet. In this work, LDH with intercalated ionic liquid (IL) anions were synthesized by a direct co-precipitation method in the presence of phosphonium IL and subsequently used as functional nanofillers for in-situ preparation of poly (butylene adipate-co-terephthalate) (PBAT) nanocomposites. The intercalated IL-anions promoted LDH swelling in monomers and LDH delamination during the course of in-situ polycondensation, which led to the production of PBAT/LDH nanocomposites with intercalated and exfoliated morphology containing well-dispersed LDH nanoplatelets. The prepared nanocomposite films showed improved water vapor permeability and mechanical properties and slightly increased crystallization degree and therefore can be considered excellent candidates for food packaging applications.


2013 ◽  
Vol 320 ◽  
pp. 665-669
Author(s):  
Chao Zhang ◽  
Yong Ji Song ◽  
Feng Hua Shi ◽  
Cui Qing Li ◽  
Hong Wang

In this paper, hexaaluminate oxides LaMAl12O19-σwere prepared by using M=Cu ,Ce and Zn as active components to substitute Al in the hexaaluminate lattice by co-precipitation method. The structure and properties of LaMAl11O19-σcatalyst was characterized with XRD and BET. The results showed LaCuAl11O19-σexhibited significant high catalytic activity for the decomposition reaction of N2O. Under the simulated in situ condition, LaCuAl11O19-σalso indicated significant catalytic activity and stability, with N2O conversion of 90% at 635°C.


Sign in / Sign up

Export Citation Format

Share Document