scholarly journals Synthesis, Characterization and Fabrication of Graphene/Boron Nitride Nanosheets Heterostructure Tunneling Devices

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 925 ◽  
Author(s):  
Muhammad Sajjad ◽  
Vladimir Makarov ◽  
Frank Mendoza ◽  
Muhammad S. Sultan ◽  
Ali Aldalbahi ◽  
...  

Various types of 2D/2D prototype devices based on graphene (G) and boron nitride nanosheets (BNNS) were fabricated to study the charge tunneling phenomenon pertinent to vertical transistors for digital and high frequency electronics. Specifically, G/BNNS/metal, G/SiO2, and G/BNNS/SiO2 heterostructures were investigated under direct current (DC-bias) conditions at room temperature. Bilayer graphene and BNNS were grown separately and transferred subsequently onto the substrates to fabricate 2D device architectures. High-resolution transmission electron microscopy confirmed the bilayer graphene structure and few layer BNNS sheets having a hexagonal B3-N3 lattice. The current vs voltage I(V) data for the G/BNNS/Metal devices show Schottky barrier characteristics with very low forward voltage drop, Fowler-Nordheim behavior, and 10−4 Ω/sq. sheet resistance. This result is ascribed to the combination of fast electron transport within graphene grains and out-of-plane tunneling in BNNS that circumvents grain boundary resistance. A theoretical model based on electron tunneling is used to qualitatively describe the behavior of the 2D G/BNNS/metal devices.

2019 ◽  
Author(s):  
Matěj Velický ◽  
Sheng Hu ◽  
Colin R. Woods ◽  
Peter S. Toth ◽  
Viktor Zólyomi ◽  
...  

Marcus-Hush theory of electron transfer is one of the pillars of modern electrochemistry with a large body of supporting experimental evidence presented to date. However, some predictions, such as the electrochemical behavior at microdisk electrodes, remain unverified. Herein, we present a study of electron tunneling across a hexagonal boron nitride barrier between a graphite electrode and redox levels in a liquid solution. This was achieved by the fabrication of microdisk electrodes with a typical diameter of 5 µm. Analysis of voltammetric measurements, using two common redox mediators, yielded several electrochemical parameters, including the electron transfer rate constant, limiting current, and transfer coefficient. They show a significant departure from the Butler-Volmer behavior in a clear manifestation of the Marcus-Hush theory of electron transfer. In addition, our system provides a novel experimental platform, which could be applied to address a number of scientific problems such as identification of reaction mechanisms, surface modification, or long-range electron transfer.


RSC Advances ◽  
2020 ◽  
Vol 10 (25) ◽  
pp. 14785-14793
Author(s):  
Hossein Tafrishi ◽  
Sadegh Sadeghzadeh ◽  
Fatemeh Molaei ◽  
Hossein Siavoshi

Octadecane is an alkane that is used to store thermal energy at ambient temperature as a phase change material.


Nano Letters ◽  
2021 ◽  
Author(s):  
Aaron L. Sharpe ◽  
Eli J. Fox ◽  
Arthur W. Barnard ◽  
Joe Finney ◽  
Kenji Watanabe ◽  
...  

2021 ◽  
pp. 2101449
Author(s):  
Shenghan Zhou ◽  
Ke Chen ◽  
Matthew Thomas Cole ◽  
Zhenjun Li ◽  
Mo Li ◽  
...  

2021 ◽  
pp. 119527
Author(s):  
Ahmed W. Ameen ◽  
Jing Ji ◽  
Marzieh Tamaddondar ◽  
Sajjad Moshenpour ◽  
Andrew B. Foster ◽  
...  

2021 ◽  
Vol 44 ◽  
pp. 100475
Author(s):  
Xiaobin Zhu ◽  
Liang Zhang ◽  
Bin Zuo ◽  
Zhengcun Zhou ◽  
Yifei Yang ◽  
...  

2012 ◽  
Vol 717-720 ◽  
pp. 1059-1064 ◽  
Author(s):  
Sei Hyung Ryu ◽  
Lin Cheng ◽  
Sarit Dhar ◽  
Craig Capell ◽  
Charlotte Jonas ◽  
...  

We present our recent developments in 4H-SiC power DMOSFETs. 4H-SiC DMOSFETs with a room temperature specific on-resistance of 3.7 mΩ-cm2 with a gate bias of 20 V, and an avalanche voltage of 1550 V with gate shorted to source, was demonstrated. A threshold voltage of 3.5 V was extracted from the power DMOSFET, and a subthreshold swing of 200 mV/dec was measured. The device was successfully scaled to an active area of 0.4 cm2, and the resulting device showed a drain current of 377 A at a forward voltage drop of 3.8 V at 25oC.


2014 ◽  
Vol 140 (20) ◽  
pp. 204701 ◽  
Author(s):  
M. S. Si ◽  
Daqiang Gao ◽  
Dezheng Yang ◽  
Yong Peng ◽  
Z. Y. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document