Neurovascular Coupling in Seizures

Neuroglia ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 36-47
Author(s):  
G. Campbell Teskey ◽  
Cam Ha T. Tran

Neurovascular coupling is a key control mechanism in cerebral blood flow (CBF) regulation. Importantly, this process was demonstrated to be affected in several neurological disorders, including epilepsy. Neurovascular coupling (NVC) is the basis for functional brain imaging, such as PET, SPECT, fMRI, and fNIRS, to assess and map neuronal activity, thus understanding NVC is critical to properly interpret functional imaging signals. However, hemodynamics, as assessed by these functional imaging techniques, continue to be used as a surrogate to map seizure activity; studies of NVC and cerebral blood flow control during and following seizures are rare. Recent studies have provided conflicting results, with some studies showing focal increases in CBF at the onset of a seizure while others show decreases. In this brief review article, we provide an overview of the current knowledge state of neurovascular coupling and discuss seizure-related alterations in neurovascular coupling and CBF control.

2012 ◽  
Vol 303 (9) ◽  
pp. H1143-H1153 ◽  
Author(s):  
Bart Spronck ◽  
Esther G. H. J. Martens ◽  
Erik D. Gommer ◽  
Frans N. van de Vosse

Cerebral blood flow regulation is based on a variety of different mechanisms, of which the relative regulatory role remains largely unknown. The cerebral regulatory system expresses two regulatory properties: cerebral autoregulation and neurovascular coupling. Since partly the same mechanisms play a role in cerebral autoregulation and neurovascular coupling, this study aimed to develop a physiologically based mathematical model of cerebral blood flow regulation combining these properties. A lumped parameter model of the P2 segment of the posterior cerebral artery and its distal vessels was constructed. Blood flow regulation is exerted at the arteriolar level by vascular smooth muscle and implements myogenic, shear stress based, neurogenic, and metabolic mechanisms. In eight healthy subjects, cerebral autoregulation and neurovascular coupling were challenged by squat-stand maneuvers and visual stimulation using a checkerboard pattern, respectively. Cerebral blood flow velocity was measured using transcranial Doppler, whereas blood pressure was measured by finger volume clamping. In seven subjects, the model proposed fits autoregulation and neurovascular coupling measurement data well. Myogenic regulation is found to dominate the autoregulatory response. Neurogenic regulation, although only implemented as a first-order mechanism, describes neurovascular coupling responses to a great extent. It is concluded that our single, integrated model of cerebral blood flow control may be used to identify the main mechanisms affecting cerebral blood flow regulation in individual subjects.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Masayo Koide ◽  
Inna Sukhotinsky ◽  
Cenk Ayata ◽  
George C. Wellman

Aneurysmal subarachnoid hemorrhage (SAH) has devastating consequences on brain function including profound effects on communication between neurons and the vasculature leading to cerebral ischemia. Physiologically, neurovascular coupling represents a focal increase in cerebral blood flow to meet increased metabolic demand of neurons within active regions of the brain. Neurovascular coupling is an ongoing process involving coordinated activity of the neurovascular unit—neurons, astrocytes, and parenchymal arterioles. Neuronal activity can also influence cerebral blood flow on a larger scale. Spreading depolarizations (SD) are self-propagating waves of neuronal depolarization and are observed during migraine, traumatic brain injury, and stroke. Typically, SD is associated with increased cerebral blood flow. Emerging evidence indicates that SAH causes inversion of neurovascular communication on both the local and global level. In contrast to other events causing SD, SAH-induced SD decreases rather than increases cerebral blood flow. Further, at the level of the neurovascular unit, SAH causes an inversion of neurovascular coupling from vasodilation to vasoconstriction. Global ischemia can also adversely affect the neurovascular response. Here, we summarize current knowledge regarding the impact of SAH and global ischemia on neurovascular communication. A mechanistic understanding of these events should provide novel strategies to treat these neurovascular disorders.


2007 ◽  
Vol 7 (4) ◽  
pp. 91-94 ◽  
Author(s):  
Theodore H. Schwartz

Hemodynamic surrogates of epileptic activity are being used to map epileptic foci with PET, SPECT, and fMRI. However, there are few studies of neurovascular coupling in epilepsy. Recent data indicate that cerebral blood flow, although focally increased at the onset of a seizure, may be temporarily inadequate to meet the metabolic demands of both interictal and ictal epileptic events. Transient focal tissue hypoxia and hyperperfusion may be excellent markers for the epileptic focus and may even precede the onset of the ictal event.


1984 ◽  
Vol 4 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Tsuyoshi Maekawa ◽  
Concezione Tommasino ◽  
Harvey M. Shapiro

Local cerebral blood flow (LCBF) was evaluated with the [14C]iodoantipyrine quantitative autoradiographic technique in 29 brain structures in conscious control rats and during fentanyl-induced electroencephalographic (EEG) spike and/or seizure activity and in the postseizure EEG suppression phase. During spike activity, LCBF increased in all structures; the increase reached statistical significance (p < 0.05) in the superior colliculus, sensorimotor cortex, and pineal body (+ 130%, + 187%, and + 185% from control, respectively). With progressive development of seizure activity, LCBF significantly increased in 24 brain structures (range, +58% to +231% from control). During the postseizure EEG suppression phase, LCBF remained elevated in all structures (+80% to +390% from control). The local cerebrovascular resistance (LCVR) significantly decreased in 10 of 29 structures with the onset of spike activity (range, –24% to –64%), and remained decreased in all brain structures during seizure activity (range, –34% to –67%) and during the EEG suppression phase (range, –24% to –74%). This reduction of LCVR represents a near maximal state of cerebrovasodilation during fentanyl-induced EEG seizure or postseizure suppression activity. The global nature of the LCBF elevation indicates that factors other than local metabolic control are responsible for CBF regulation during local seizure activity.


Trials ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhi-peng Xiao ◽  
ke Jin ◽  
Jie-qing Wan ◽  
Yong Lin ◽  
Yao-hua Pan ◽  
...  

Abstract Background Cerebrovascular reactivity (CVR) is the change in cerebral blood flow in response to a vaso-active stimulus, and may assist the treatment strategy of ischemic stroke. However, previous studies reported that a therapeutic strategy for stroke mainly depends on the degree of vascular stenosis with steady-state vascular parameters (e.g., cerebral blood flow and CVR). Hence, measurement of CVR by multimodal imaging techniques may improve the treatment of ischemic stroke. Methods/design This is a prospective, randomized, controlled clinical trial that aimed to examine the capability of multimodal imaging techniques for the evaluation of CVR to improve treatment of patients with ischemic stroke. A total of 66 eligible patients will be recruited from Renji Hospital, Shanghai Jiaotong University School of Medicine. The patients will be categorized based on CVR into two subgroups as follows: CVR > 10% group and CVR < 10% group. The patients will be randomly assigned to medical management, percutaneous transluminal angioplasty and stenting, and intracranial and extra-cranial bypass groups in a 1:1:1 ratio. The primary endpoint is all adverse events and ipsilateral stroke recurrence at 6, 12, and 24 months after management. The secondary outcomes include the CVR, the National Institute of Health stroke scale and the Modified Rankin Scale at 6, 12, and 24 months. Discussion Measurement of cerebrovascular reserve by multimodal image is recommended by most recent studies to guide the treatment of ischemic stroke, and thus its efficacy and evaluation accuracy need to be established in randomized controlled settings. This prospective, parallel, randomized, controlled registry study, together with other ongoing studies, should present more evidence for optimal individualized accurate treatment of ischemic stroke. Trial registration Chinese Clinical Trial Registry, ID: ChiCTR-IOR-16009635; Registered on 16 October 2016. All items are from the World Health Organization Trial Registration Data Set and registration in the Chinese Clinical Trial Registry: ChiCTR-IOR-16009635.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Di Zhang ◽  
Xiaobin Huang ◽  
Cunnan Mao ◽  
Yuchen Chen ◽  
Zhengfei Miao ◽  
...  

Abstract Background Migraine constitutes a global health burden, and its pathophysiology is not well-understood; research evaluating cerebral perfusion and altered blood flow between brain areas using non-invasive imaging techniques, such as arterial spin labeling, have been scarce. This study aimed to assess cerebral blood flow (CBF) and its connectivity of migraine. Methods This study enrolled 40 patients with episodic migraine without aura (MwoA), as well as 42 healthy patients as control (HC). Two groups of normalized CBF and CBF connectivity were compared, and the relationship between CBF variation and clinical scale assessment was further evaluated. Results In comparison to HC subjects, MwoA patients exhibited higher CBF in the right middle frontal orbital gyrus (ORBmid.R) and the right middle frontal gyrus, while that in Vermis_6 declined. The increased CBF of ORBmid.R was positively correlated with both the Visual Light Sensitivity Questionnaire-8 (VLSQ-8) and the monthly attack frequency score. In MwoA, significantly decreased CBF connectivity was detected between ORBmid.R and the left superior frontal gyrus, the right putamen, the right caudate, as well as the right angular gyrus. In addition, increased CBF connectivity was observed between the left calcarine cortex and ORBmid.R. Conclusions Our results indicate that migraine patients exhibit abnormalities in regional CBF and feature CBF connection defects at the resting state. The affected areas involve information perception, information integration, and emotional, pain and visual processing. Our findings might provide important clues for the pathophysiology of migraine.


Sign in / Sign up

Export Citation Format

Share Document