scholarly journals Human Breast Milk Promotes the Secretion of Potentially Beneficial Metabolites by Probiotic Lactobacillus reuteri DSM 17938

Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1548 ◽  
Author(s):  
Tu T. Mai ◽  
Dat Q. Tran ◽  
Stefan Roos ◽  
J. Marc Rhoads ◽  
Yuying Liu

Human breast milk (HBM) may have beneficial effects on Lactobacillus reuteri DSM 17938 (LR 17938) -mediated immunomodulation. We aimed to determine the effects of HBM on proliferation of LR 17938 in vitro and its associated proteins and metabolites in culture, in order to provide mechanistic insights into the health benefits of LR 17938. LR 17938 was cultured anaerobically in MRS bacterial culture media, HBM (from 6 mothers), and 2 types of cow-milk formula. The colony-forming unit (CFU) was calculated to evaluate LR 17938 growth. Sixteen-hour-fermented supernatants were used for metabolomics, and bacterial lysates were used for proteomics analysis. We found that growth of LR 17938 was 10 times better in HBM than in formula. We detected 261/452 metabolites upregulated when LR 17938 cultured in HBM compared to in formula, mainly participating in the glyoxylate cycle (succinate), urea cycle (citrulline), methionine methylation (N-acetylcysteine), and polyamine synthesis (spermidine). The significantly up-regulated enzymes were also involved in the formation of acetyl-CoA in the glyoxylate cycle and the antioxidant N-acetylcysteine. In conclusion, HBM enhances the growth of LR 17938 compared to formula and promotes LR 17938-associated metabolites that relate to energy and antioxidant status, which may be linked to the physiological effects of L. reuteri.

1999 ◽  
Vol 45 (1) ◽  
pp. 76-81 ◽  
Author(s):  
Kirsi-Marjut Järvinen ◽  
Kaisu Juntunen-Backman ◽  
Hanna Suomalainen

2019 ◽  
Vol 156 (6) ◽  
pp. S-457
Author(s):  
Tu T. Mai ◽  
Yuying Liu ◽  
Thomas K. Hoang ◽  
Baokun He ◽  
Dat Q. Tran ◽  
...  

2015 ◽  
Vol 6 (2) ◽  
pp. 219-224 ◽  
Author(s):  
E. López-Huertas

Human breast milk has been described as a source of lactic acid bacteria. Lactobacillus fermentum CECT5716 is a human breast milk strain whose probiotic properties, safety and efficacy has been demonstrated in vitro and in vivo, including controlled trials with human adults. Since the origin of this probiotic strain is human breast milk, we aimed to investigate the safety and efficacy of an infant and a follow-on formulas supplemented with this strain of L. fermentum. We carried out two randomised controlled trials: one trial with infants of 6-12 months of age (follow-on formula study) and another one with infants from 1 to 5 months of age (infant formula study). The results from the trials showed that the probiotic formulas were safe, well tolerated and might be useful for the prevention of community-acquired infections.


2008 ◽  
Vol 74 (15) ◽  
pp. 4686-4694 ◽  
Author(s):  
Rina González ◽  
Eline S. Klaassens ◽  
Erja Malinen ◽  
Willem M. de Vos ◽  
Elaine E. Vaughan

ABSTRACT In order to gain insight into the effects of human breast milk on the development of the intestinal bifidobacteria and associated health effects, the transcriptome of Bifidobacterium longum LMG 13197 grown in breast milk and formula milk containing galactooligosaccharides (GOS) and long-chain fructooligosaccharides was compared to that obtained in a semisynthetic medium with glucose. Total RNA was isolated from exponentially growing cells and hybridized to a clone library-based microarray. Inserts of clones with significant hybridization signals were sequenced and identified. The B. longum transcriptomes obtained during growth on human and formula milk were more similar to each other than to that obtained from growth in semisynthetic medium with glucose. Remarkably, there were only a few genes implicated in carbohydrate metabolism that were similarly upregulated during growth in both human and formula milk although oligosaccharides were added to the formula. Common highly upregulated genes notably included putative genes for cell surface type 2 glycoprotein-binding fimbriae that are implicated in attachment and colonization in the intestine. Genes involved in carbohydrate metabolism formed the dominant group specifically upregulated in breast milk and included putative genes for N-acetylglucosamine degradation and for metabolism of mucin and human milk oligosaccharides via the galactose/lacto-N-biose gene cluster. This supports the notion that the bifidogenic effect of human milk is to a great extent based on its oligosaccharides. The transcriptional effect of semisynthetic medium containing GOS, which, like human milk, contains a large amount of lactose and galactose, on the B. longum transcriptome was also studied and revealed substantial similarity with carbohydrate-utilization genes upregulated during growth in human milk. This knowledge provides leads to optimizing formula milk to better simulate the observed bifidogenic effects of human breast milk.


Author(s):  
Andrew J. Clulow ◽  
Syaza Y. Binte Abu Bakar ◽  
Malinda Salim ◽  
Cameron J. Nowell ◽  
Adrian Hawley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document