scholarly journals St. John’s Wort Suppresses Growth in Triple-Negative Breast Cancer Cell Line MDA-MB-231 by Inducing Prodeath Autophagy and Apoptosis

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3175
Author(s):  
Mikyoung You ◽  
Young-Hyun Lee ◽  
Hwa-Jin Kim ◽  
Ji Hyun Kook ◽  
Hyeon-A Kim

The rational regulation of programmed cell death by means of autophagy and apoptosis has been considered a potential treatment strategy for cancer. We demonstrated the inhibitory effect of St. John’s Wort (SJW) on growth in the triple-negative breast cancer (TNBC) cell line and xenografted mice and its target mechanism concerning autophagic and apoptotic cell death. SJW ethanol extract (SJWE) inhibited proliferation in a dose-dependent manner. SJWE treatment dramatically increased autophagy flux and apoptosis compared with the control. The autophagy inhibitor, 3-methyladenine (3-MA), reversed the SJWE-induced inhibition of cell proliferation and regulation of autophagy and apoptosis, indicating that SJWE induced apoptosis through prodeath autophagy. Furthermore, SJWE inhibited tumor growth and induced autophagy and apoptosis in the tumor of MDA-MB-231 xenografted athymic nude mice. Our results indicate that SJWE might have great potential as a new anticancer therapy for triple-negative breast cancer by inducing prodeath autophagy and apoptosis.

Author(s):  
Ratna Dwi Ramadani ◽  
Rohmad Yudi Utomo ◽  
Adam Hermawan ◽  
Edy Meiyanto

Mortality in cancer is primarily due to failure of metastasis prevention. One strategy to target the cancerous cell is Boron Neutron Captured Therapy which showed high affinity toward cancer cells and reported to have anti-proliferative as well as antimetastatic activities. Cancer Chemoprevention Research Center Faculty of Pharmacy Universitas Gadjah Mada, has developed boron-containing substance namely pentagamaboronon-0 (PGB-0) which is known to exhibit anticancer activity towards breast cancer cell. The purposes of this research are focused to explore the anti-migratory activities of PGB-0-So against triple negative breast cancer cell. The MTT cytotoxicity assay of PGB-0-So against 4T1 breast cancer cell line were found to exert potential effect in dose-dependent manner with IC50 values of 39 μM. The study of cell migration inhibition using in vitro wound healing assays and gelatin zymography on highly metastasis breast cancer cell line 4T1, following the treatment of sub IC50 doses of PGB-0-So complex slightly inhibited cell migration through the inhibition of matrix metalloproteinase-9 expression. These findings suggest that PGB-0-So is potential as an anticancer agent.Keywords : curcumin analogue, PGB-0-So, 4T1 Cells, migration, MMP-9 


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Prema Robinson ◽  
Moses Kasembeli ◽  
Uddalak Bharadwaj ◽  
Nikita Engineer ◽  
Kris T. Eckols ◽  
...  

Doxorubicin (DOX), an anthracycline, is broadly considered the most active single agent available for treating breast cancer but has been known to induce cardiotoxicity. Although DOX is highly effective in treating triple-negative breast cancer (TNBC), DOX can have poor outcomes owing to induction of chemoresistance. There is an urgent need to develop new therapies for TNBC aimed at improving DOX outcome and DOX-induced cardiotoxicity. Substance P (SP), a neuropeptide involved in pain transmission is known to stimulate production of reactive oxygen species (ROS). Elevated cardiac ROS is linked with heart injury and failure. We investigated the role of SP in chemotherapy-associated death of cardiomyocytes and chemoresistance. We showed that pretreating a cardiomyocyte cell line (H9C2) and a TNBC cell line (MDA-MB 231) with aprepitant, a SP receptor antagonist that is routinely used to treat chemotherapy-associated associated nausea, decreased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in cardiomyocytes and increased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in TNBC cells compared with cells treated with DOX alone. Our findings demonstrate the ability of aprepitant to decrease DOX-induced killing of cardiomyocytes and to increase cancer cell sensitivity to DOX, which has tremendous clinical significance.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1303
Author(s):  
Rizwan Ali ◽  
Hajar Al Zahrani ◽  
Tlili Barhoumi ◽  
Alshaimaa Alhallaj ◽  
Abdullah Mashhour ◽  
...  

In vitro studies of a disease are key to any in vivo investigation in understanding the disease and developing new therapy regimens. Immortalized cancer cell lines are the best and easiest model for studying cancer in vitro. Here, we report the establishment of a naturally immortalized highly tumorigenic and triple-negative breast cancer cell line, KAIMRC2. This cell line is derived from a Saudi Arabian female breast cancer patient with invasive ductal carcinoma. Immunocytochemistry showed a significant ratio of the KAIMRC2 cells’ expressing key breast epithelial and cancer stem cells (CSCs) markers, including CD47, CD133, CD49f, CD44, and ALDH-1A1. Gene and protein expression analysis showed overexpression of ABC transporter and AKT-PI3Kinase as well as JAK/STAT signaling pathways. In contrast, the absence of the tumor suppressor genes p53 and p73 may explain their high proliferative index. The mice model also confirmed the tumorigenic potential of the KAIMRC2 cell line, and drug tolerance studies revealed few very potent candidates. Our results confirmed an aggressive phenotype with metastatic potential and cancer stem cell-like characteristics of the KAIMR2 cell line. Furthermore, we have also presented potent small molecule inhibitors, especially Ryuvidine, that can be further developed, alone or in synergy with other potent inhibitors, to target multiple cancer-related pathways.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiao-Jiao Zhang ◽  
Dai-Wei Wang ◽  
Dan Cai ◽  
Qing Lu ◽  
Yong-Xian Cheng

Ganoderma fungi as popular raw materials of numerous functional foods have been extensively investigated. In this study, five pairs of meroterpenoid enantiomers beyond well-known triterpenoids and polysaccharides, dayaolingzhiols I−M (1–5), were characterized from Ganoderma lucidum. Their structures were identified using spectroscopic and computational methods. Structurally, compound 1 features a novel dioxabicyclo[2.2.2]octan-3-one motif in the side chain. Ethnoknowledge-derived biological evaluation found that (+)-5 could activate Akt and AMPK phosphorylation in insulin-stimulated C2C12 cells, and (+)-5 could activate glucose uptake dose dependently in C2C12 cells. Furthermore, we found that (+)-1 (+)-4, and (–)-4 could significantly inhibit cell migration of the MDA-MB-231 cell line, of which (+)-4 showed significant inhibitory effects against cell migration of the MDA-MB-231 cell line in a dose-dependent manner. These findings revealed the meroterpenoidal composition of G. lucidum and its roles in the prevention of chronic diseases such as diabetes mellitus and triple-negative breast cancer.


2014 ◽  
Vol 8 (Suppl 4) ◽  
pp. P22
Author(s):  
Klesia Madeira ◽  
Murilo Cerri ◽  
Renata Daltoé ◽  
Alice Herlinger ◽  
João Filho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document