scholarly journals Change in Exercise Performance and Markers of Acute Kidney Injury Following Heat Acclimation with Permissive Dehydration

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 841
Author(s):  
Arpie Haroutounian ◽  
Fabiano T. Amorim ◽  
Todd A. Astorino ◽  
Nazareth Khodiguian ◽  
Katharine M. Curtiss ◽  
...  

Implementing permissive dehydration (DEH) during short-term heat acclimation (HA) may accelerate adaptations to the heat. However, HA with DEH may augment risk for acute kidney injury (AKI). This study investigated the effect of HA with permissive DEH on time-trial performance and markers of AKI. Fourteen moderately trained men (age and VO2max = 25 ± 0.5 yr and 51.6 ± 1.8 mL.kg−1.min−1) were randomly assigned to DEH or euhydration (EUH). Time-trial performance and VO2max were assessed in a temperate environment before and after 7 d of HA. Heat acclimation consisted of 90 min of cycling in an environmental chamber (40 °C, 35% RH). Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) were assessed pre- and post-exercise on day 1 and day 7 of HA. Following HA, VO2max did not change in either group (p = 0.099); however, time-trial performance significantly improved (3%, p < 0.01) with no difference between groups (p = 0.485). Compared to pre-exercise, NGAL was not significantly different following day 1 and 7 of HA (p = 0.113) with no difference between groups (p = 0.667). There was a significant increase in KIM-1 following day 1 and 7 of HA (p = 0.002) with no difference between groups (p = 0.307). Heat acclimation paired with permissive DEH does not amplify improvements in VO2max or time-trial performance in a temperate environment versus EUH and does not increase markers of AKI.

2010 ◽  
Vol 109 (4) ◽  
pp. 1140-1147 ◽  
Author(s):  
Santiago Lorenzo ◽  
John R. Halliwill ◽  
Michael N. Sawka ◽  
Christopher T. Minson

This study examined the impact of heat acclimation on improving exercise performance in cool and hot environments. Twelve trained cyclists performed tests of maximal aerobic power (V̇o2max), time-trial performance, and lactate threshold, in both cool [13°C, 30% relative humidity (RH)] and hot (38°C, 30% RH) environments before and after a 10-day heat acclimation (∼50% V̇o2max in 40°C) program. The hot and cool condition V̇o2max and lactate threshold tests were both preceded by either warm (41°C) water or thermoneutral (34°C) water immersion to induce hyperthermia (0.8–1.0°C) or sustain normothermia, respectively. Eight matched control subjects completed the same exercise tests in the same environments before and after 10 days of identical exercise in a cool (13°C) environment. Heat acclimation increased V̇o2max by 5% in cool (66.8 ± 2.1 vs. 70.2 ± 2.3 ml·kg−1·min−1, P = 0.004) and by 8% in hot (55.1 ± 2.5 vs. 59.6 ± 2.0 ml·kg−1·min−1, P = 0.007) conditions. Heat acclimation improved time-trial performance by 6% in cool (879.8 ± 48.5 vs. 934.7 ± 50.9 kJ, P = 0.005) and by 8% in hot (718.7 ± 42.3 vs. 776.2 ± 50.9 kJ, P = 0.014) conditions. Heat acclimation increased power output at lactate threshold by 5% in cool (3.88 ± 0.82 vs. 4.09 ± 0.76 W/kg, P = 0.002) and by 5% in hot (3.45 ± 0.80 vs. 3.60 ± 0.79 W/kg, P < 0.001) conditions. Heat acclimation increased plasma volume (6.5 ± 1.5%) and maximal cardiac output in cool and hot conditions (9.1 ± 3.4% and 4.5 ± 4.6%, respectively). The control group had no changes in V̇o2max, time-trial performance, lactate threshold, or any physiological parameters. These data demonstrate that heat acclimation improves aerobic exercise performance in temperate-cool conditions and provide the scientific basis for employing heat acclimation to augment physical training programs.


2011 ◽  
Vol 111 (1) ◽  
pp. 221-227 ◽  
Author(s):  
Santiago Lorenzo ◽  
Christopher T. Minson ◽  
Tony G. Babb ◽  
John R. Halliwill

The relationship between exercise performance and lactate and ventilatory thresholds under two distinct environmental conditions is unknown. We examined the relationships between six lactate threshold methods (blood- and ventilation-based) and exercise performance in cyclists in hot and cool environments. Twelve cyclists performed a lactate threshold test, a maximal O2 uptake (V̇o2max) test, and a 1-h time trial in hot (38°C) and cool (13°C) conditions, before and after heat acclimation. Eight control subjects completed the same tests before and after 10 days of identical exercise in a cool environment. The highest correlations were observed with the blood-based lactate indexes; however, even the indirect ventilation-based indexes were well correlated with mean power during the time trial. Averaged bias was 15.4 ± 3.6 W higher for the ventilation- than the blood-based measures ( P < 0.05). The bias of blood-based measures in the hot condition was increased: the time trial was overestimated by 37.7 ± 3.6 W compared with only 24.1 ± 3.2 W in the cool condition ( P < 0.05). Acclimation had no effect on the bias of the blood-based indexes ( P = 0.51) but exacerbated the overestimation by some ventilation-based indexes by an additional 34.5 ± 14.1 W ( P < 0.05). Blood-based methods to determine lactate threshold show less bias and smaller variance than ventilation-based methods when predicting time-trial performance in cool environments. Of the blood-based methods, the inflection point between steady-state lactate and rising lactate (INFL) was the best method to predict time-trial performance. Lastly, in the hot condition, ventilation-based predictions are less accurate after heat acclimation, while blood-based predictions remain valid in both environments after heat acclimation.


Author(s):  
Wołyniec ◽  
Kasprowicz ◽  
Giebułtowicz ◽  
Korytowska ◽  
Zorena ◽  
...  

Acute kidney injury (AKI) is described as a relatively common complication of exercise. In clinical practice the diagnosis of AKI is based on serum creatinine, the level of which is dependent not only on glomerular filtration rate but also on muscle mass and injury. Therefore, the diagnosis of AKI is overestimated after physical exercise. The aim of this study was to determine changes in uremic toxins: creatinine, urea, uric acid, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), trimethylamine N-oxide (TMAO) and urinary makers of AKI: albumin, neutrophil gelatinase-associated lipocalin (uNGAL), kidney injury molecule-1 and cystatin-C (uCyst-C) after long runs. Sixteen runners, mean age 36.7 ± 8.2 years, (2 women, 14 men) participating in 10- and 100-km races were studied. Blood and urine were taken before and after the races to assess markers of AKI. A statistically significant increase in creatinine, urea, uric acid, SDMA and all studied urinary AKI markers was observed. TMAO and ADMA levels did not change. The changes in studied markers seem to be a physiological reaction, because they were observed almost in every runner. The diagnosis of kidney failure after exercise is challenging. The most valuable novel markers which can help in post-exercise AKI diagnosis are uCyst-C and uNGAL.


2020 ◽  
Vol 319 (1) ◽  
pp. R114-R122
Author(s):  
Roy M. Salgado ◽  
Kirsten E. Coffman ◽  
Karleigh E. Bradbury ◽  
Katherine M. Mitchell ◽  
Beau R. Yurkevicius ◽  
...  

Exercise-heat acclimation (EHA) induces adaptations that improve tolerance to heat exposure. Whether adaptations from EHA can also alter responses to hypobaric hypoxia (HH) conditions remains unclear. This study assessed whether EHA can alter time-trial performance and/or incidence of acute mountain sickness (AMS) during HH exposure. Thirteen sea-level (SL) resident men [SL peak oxygen consumption (V̇o2peak) 3.19 ± 0.43 L/min] completed steady-state exercise, followed by a 15-min cycle time trial and assessment of AMS before (HH1; 3,500 m) and after (HH2) an 8-day EHA protocol [120 min; 5 km/h; 2% incline; 40°C and 40% relative humidity (RH)]. EHA induced lower heart rate (HR) and core temperature and plasma volume expansion. Time-trial performance was not different between HH1 and HH2 after 2 h (106.3 ± 23.8 vs. 101.4 ± 23.0 kJ, P = 0.71) or 24 h (107.3 ± 23.4 vs. 106.3 ± 20.8 kJ, P > 0.9). From HH1 to HH2, HR and oxygen saturation, at the end of steady-state exercise and time-trial tests at 2 h and 24 h, were not different ( P > 0.05). Three of 13 volunteers developed AMS during HH1 but not during HH2, whereas a fourth volunteer only developed AMS during HH2. Heat shock protein 70 was not different from HH1 to HH2 at SL [1.9 ± 0.7 vs. 1.8 ± 0.6 normalized integrated intensities (NII), P = 0.97] or after 23 h (1.8 ± 0.4 vs. 1.7 ± 0.5 NII, P = 0.78) at HH. Our results indicate that this EHA protocol had little to no effect—neither beneficial nor detrimental—on exercise performance in HH. EHA may reduce AMS in those who initially developed AMS; however, studies at higher elevations, having higher incidence rates, are needed to confirm our findings.


2017 ◽  
Vol 243 (3) ◽  
pp. 272-282 ◽  
Author(s):  
Blessy George ◽  
Melanie S Joy ◽  
Lauren M Aleksunes

Despite recent progress in the development of novel approaches to treat cancer, traditional antineoplastic drugs, such as cisplatin, remain a mainstay of regimens targeting solid tumors. Use of cisplatin is limited by acute kidney injury, which occurs in approximately 30% of patients. Current clinical measures, such as serum creatinine and estimated glomerular filtration rate, are inadequate in their ability to detect acute kidney injury, particularly when there is only a moderate degree of injury. Thus, there is an urgent need for improved diagnostic biomarkers to predict nephrotoxicity. There is also interest by the U.S. Food and Drug Administration to validate and implement new biomarkers to identify clinical and subclinical acute kidney injury in patients during the drug approval process. This minireview provides an overview of the current literature regarding the utility of urinary proteins (albumin, beta-2-microglobulin, N-acetyl-D-glucosaminidase, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, and cystatin C) as biomarkers for cisplatin-induced AKI. Many of the well-studied urinary proteins (KIM-1, NGAL, B2M, albumin) as well as emerging biomarkers (calbindin, monocyte chemotactic protein-1, and trefoil factor 3) display distinct patterns of time-dependent excretion after cisplatin administration. Implementation of these biomarker proteins in the oncology clinic has been hampered by a lack of validation studies. To address these issues, large head-to-head studies are needed to fully characterize time-dependent responses and establish accurate cutoff values and ranges, particularly in cancer patients. Impact statement There is growing interest in using urinary protein biomarkers to detect acute kidney injury in oncology patients prescribed the nephrotoxic anticancer drug cisplatin. We aim to synthesize and organize the existing literature on biomarkers examined clinically in patients receiving cisplatin-containing chemotherapy regimens. This minireview highlights several proteins (kidney injury molecule-1, beta-2-microglobulin, neutrophil gelatinase-associated lipocalin, calbindin, monocyte chemotactic protein-1, trefoil factor 3) with the greatest promise for detecting cisplatin-induced acute kidney injury in humans. A comprehensive review of the existing literature may aid in the design of larger studies needed to implement the clinical use of these urinary proteins as biomarkers of kidney injury.


2018 ◽  
Vol 32 (5) ◽  
pp. 1366-1375 ◽  
Author(s):  
Carl A. James ◽  
Alan J. Richardson ◽  
Peter W. Watt ◽  
Ashley G.B. Willmott ◽  
Oliver R. Gibson ◽  
...  

2019 ◽  
Vol 63 (3) ◽  
pp. 405-411
Author(s):  
Jia-San Zheng ◽  
Jing-Nie ◽  
Ting-Ting Zhu ◽  
Hong-Ri Ruan ◽  
Xue-Wei ◽  
...  

Abstract Introduction The value of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (Kim-1), and liver-type fatty acid binding protein (L-FABP) was assessed in early diagnosis of gentamicin-induced acute kidney injury (AKI) in dogs. Material and Methods Subcutaneous gentamicin injection in 16 healthy adult beagles made the AKI model. Blood was sampled every 6 h to detect NGAL, Kim-1, L-FABP, and serum creatinine (SCr) concentrations. Kidney tissue of two dogs was taken before the injection, as soon as SCr was elevated (78 μmol/L), and when it had risen to 1.5 times the baseline, and haematoxylin-eosin staining and transmission electron microscopy (TEM) were used to observe changes. Results NGAL, Kim-1, and SCr levels were significantly increased (P < 0.05) at 18, 30, and 78 h post injection, but L-FABP concentration was not associated with renal injury. At the earliest SCr elevation stage, findings were mild oedema, degeneration, and vacuolisation in renal tubular epithelial cells in pathology, and mild cytoplasmic and mitochondrial oedema in TEM. At this time point, NGAL and Kim-1 concentrations were significantly increased (P < 0.05), indicating that these two molecules biomark early kidney injury in dogs. Using receiver operating characteristic curve analysis, their warning levels were > 25.31 ng/mL and > 48.52 pg/mL. Conclusion Plasma NGAL and Kim-1 above warning levels are early indicators of gentamicin-induced AKI in dogs.


Kidney360 ◽  
2021 ◽  
pp. 10.34067/KID.0004802021
Author(s):  
Kelly R. McMahon ◽  
Hayton Chui ◽  
Shahrad Rod Rassekh ◽  
Kirk R. Schultz ◽  
Tom D. Blydt-Hansen ◽  
...  

Background: Few studies have described associations between acute kidney injury (AKI) biomarkers, urinary neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), and AKI in cisplatin-treated children. We aimed to describe excretion patterns of urine NGAL and KIM-1 and associations with AKI in children receiving cisplatin. Methods: Participants (n=159) were enrolled between 2013 and 2017 in a prospective cohort study conducted in 12 Canadian pediatric hospitals. Participants were evaluated at early cisplatin infusions (at first or second cisplatin cycle) and late cisplatin infusions (last or second-to-last cycle). Urine NGAL and KIM-1 were measured (1) pre-cisplatin infusion, (2) post-infusion (morning after), and (3) at hospital discharge at early and late cisplatin infusions. Primary outcome: AKI defined by serum creatinine rise within 10 days post-cisplatin based on Kidney Disease: Improving Global Outcomes guidelines criteria (≥stage 1). Results: Of 159 children, 156 (median [interquartile (IQR)] age: 5.8 [2.4-12.0] years; 78 [50%] female) had biomarker data available at early cisplatin infusions and 127 had data at late infusions. Forty-six of 156 (29%) and 22/127 (17%) developed AKI within 10 days of cisplatin administration following early and late infusions, respectively. Urine NGAL and KIM-1 concentrations were significantly higher in patients with vs. without AKI (near hospital discharge of late cisplatin infusion, median [IQR]: NGAL: 76.1 [10.0-232.7] vs. 14.9 [5.4-29.7] ng/mg creatinine; KIM-1: 4415 [2083-9077] vs. 1049 [358-3326] pg/mg creatinine; P<.01). These markers modestly discriminated for AKI (area under receiver-operating characteristic curve (AUC-ROC) range: NGAL: 0.56-0.72; KIM-1: 0.48-0.75). Biomarker concentrations were higher and better discriminated for AKI at late cisplatin infusions (AUC-ROCs range: 0.54-0.75) vs. early infusions (AUC-ROCs range: 0.48-0.65). Conclusions: Urine NGAL and KIM-1 were modest at discriminating for cisplatin-associated AKI. Further research is needed to determine clinical utility and applicability of these markers and late kidney outcomes associations.


Sign in / Sign up

Export Citation Format

Share Document