temperate environment
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 19)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Łukasz Myczko ◽  
Przemysław Kurek ◽  
Piotr Tryjanowski ◽  
Blanka Wiatrowska ◽  
Łukasz Jankowiak ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amélie Fontaine ◽  
Anouk Simard ◽  
Bryan Dubois ◽  
Julien Dutel ◽  
Kyle H. Elliott

AbstractWildlife managers design artificial structures, such as bird houses and bat boxes, to provide alternative nesting and roosting sites that aid wildlife conservation. However, artificial structures for wildlife may not be equally efficient at all sites due to varying climate or habitat characteristics influencing thermal properties. For example, bat boxes are a popular measure employed to provide compensatory or supplementary roost sites for bats and educate the public. Yet, bat boxes are often thermally unstable or too cold to fulfill reproductive females needs in northern temperate environments. To help improve the thermodynamics of bat boxes, we tested the effect of (1) three mountings, (2) four orientations, and (3) twelve bat box designs on the internal temperature of bat boxes. We recorded temperatures in bat boxes across a climate gradient at seven sites in Quebec, Canada. Bat boxes mounted on buildings had warmer microclimates at night than those on poles and those facing east warmed sooner in the morning than those facing west or south. Our best new model based on passive solar architecture (Ncube PH1) increased the time in the optimal temperature range (22–40 °C) of targeted species by up to 13% compared to the most commonly used model (Classic 4-chamber) when mounted on a building with an east orientation (other designs presented in the Supplementary Information). Based on bioenergetic models, we estimated that bats saved up to 8% of their daily energy using the Ncube PH1 compared to the Classic 4-chamber when mounted on a building with an east orientation. We demonstrate that the use of energy-saving concepts from architecture can improve the thermal performance of bat boxes and potentially other wildlife structures as well.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 841
Author(s):  
Arpie Haroutounian ◽  
Fabiano T. Amorim ◽  
Todd A. Astorino ◽  
Nazareth Khodiguian ◽  
Katharine M. Curtiss ◽  
...  

Implementing permissive dehydration (DEH) during short-term heat acclimation (HA) may accelerate adaptations to the heat. However, HA with DEH may augment risk for acute kidney injury (AKI). This study investigated the effect of HA with permissive DEH on time-trial performance and markers of AKI. Fourteen moderately trained men (age and VO2max = 25 ± 0.5 yr and 51.6 ± 1.8 mL.kg−1.min−1) were randomly assigned to DEH or euhydration (EUH). Time-trial performance and VO2max were assessed in a temperate environment before and after 7 d of HA. Heat acclimation consisted of 90 min of cycling in an environmental chamber (40 °C, 35% RH). Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) were assessed pre- and post-exercise on day 1 and day 7 of HA. Following HA, VO2max did not change in either group (p = 0.099); however, time-trial performance significantly improved (3%, p < 0.01) with no difference between groups (p = 0.485). Compared to pre-exercise, NGAL was not significantly different following day 1 and 7 of HA (p = 0.113) with no difference between groups (p = 0.667). There was a significant increase in KIM-1 following day 1 and 7 of HA (p = 0.002) with no difference between groups (p = 0.307). Heat acclimation paired with permissive DEH does not amplify improvements in VO2max or time-trial performance in a temperate environment versus EUH and does not increase markers of AKI.


Author(s):  
Jo Corbett ◽  
Heather C. Massey ◽  
Joseph T. Costello ◽  
Michael J. Tipton ◽  
Rebecca A. Neal

2020 ◽  
Vol 15 (9) ◽  
pp. 1260-1271
Author(s):  
Erin L. McCleave ◽  
Katie M. Slattery ◽  
Rob Duffield ◽  
Stephen Crowcroft ◽  
Chris R. Abbiss ◽  
...  

Purpose: To examine whether concurrent heat and intermittent hypoxic training can improve endurance performance and physiological responses relative to independent heat or temperate interval training. Methods: Well-trained male cyclists (N = 29) completed 3 weeks of moderate- to high-intensity interval training (4 × 60 min·wk−1) in 1 of 3 conditions: (1) heat (HOT: 32°C, 50% relative humidity, 20.8% fraction of inspired oxygen, (2) heat + hypoxia (H+H: 32°C, 50% relative humidity, 16.2% fraction of inspired oxygen), or (3) temperate environment (CONT: 22°C, 50% relative humidity, 20.8% fraction of inspired oxygen). Performance 20-km time trials (TTs) were conducted in both temperate (TTtemperate) and assigned condition (TTenvironment) before (base), immediately after (mid), and after a 3-week taper (end). Measures of hemoglobin mass, plasma volume, and blood volume were also assessed. Results: There was improved 20-km TT performance to a similar extent across all groups in both TTtemperate (mean ±90% confidence interval HOT, −2.8% ±1.8%; H+H, −2.0% ±1.5%; CONT, −2.0% ±1.8%) and TTenvironment (HOT, −3.3% ±1.7%; H+H, −3.1% ±1.6%; CONT, −3.2% ±1.1%). Plasma volume (HOT, 3.8% ±4.7%; H+H, 3.3% ±4.7%) and blood volume (HOT, 3.0% ±4.1%; H+H, 4.6% ±3.9%) were both increased at mid in HOT and H+H over CONT. Increased hemoglobin mass was observed in H+H only (3.0% ±1.8%). Conclusion: Three weeks of interval training in heat, concurrent heat and hypoxia, or temperate environments improve 20-km TT performance to the same extent. Despite indications of physiological adaptations, the addition of independent heat or concurrent heat and hypoxia provided no greater performance benefits in a temperate environment than temperate training alone.


Sign in / Sign up

Export Citation Format

Share Document