scholarly journals Response of Tropical Cyclone Frequency to Sea Surface Temperatures Using Aqua-Planet Simulations

Oceans ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 785-810
Author(s):  
Pavan Harika Raavi ◽  
Kevin J. E. Walsh

The present study investigates the effect of increasing sea surface temperatures (SSTs) on tropical cyclone (TC) frequency using the high-resolution Australian Community Climate and Earth-System Simulator (ACCESS) model. We examine environmental conditions leading to changes in TC frequency in aqua-planet global climate model simulations with globally uniform sea surface temperatures (SSTs). Two different TC tracking schemes are used. The Commonwealth Scientific and Industrial Research Organization (CSIRO) scheme (a resolution-dependent scheme) detects TCs that resemble observed storms, while the Okubo–Weiss zeta parameter (OWZP) tracking scheme (a resolution-independent scheme) detects the locations within “marsupial pouches” that are favorable for TC formation. Both schemes indicate a decrease in the global mean TC frequency with increased saturation deficit and static stability of the atmosphere. The OWZP scheme shows a poleward shift in the genesis locations with rising temperatures, due to lower vertical wind shear. We also observe an overall decrease in the formation of tropical depressions (TDs) with increased temperatures, both for those that develop into TCs and non-developing cases. The environmental variations at the time of TD genesis between the developing and the non-developing tropical depressions identify the Okubo–Weiss (OW) parameter and omega (vertical mass flux) as significant influencing variables. Initial vortices with lower vorticity or with weaker upward mass flux do not develop into TCs due to environments with higher saturation deficit and stronger static stability of the atmosphere. The latitudinal variations in the large-scale environmental conditions account for the latitudinal differences in the TC frequency in the OWZP scheme.

2020 ◽  
Vol 33 (4) ◽  
pp. 1473-1486 ◽  
Author(s):  
K. J. E. Walsh ◽  
S. Sharmila ◽  
M. Thatcher ◽  
S. Wales ◽  
S. Utembe ◽  
...  

AbstractThis study aims to investigate the response of simulated tropical cyclone formation to specific climate conditions, using an idealized aquaplanet framework of an ~40-km-horizontal-resolution atmospheric general circulation model. Two sets of idealized model experiments have been performed, one with a set of uniformly distributed constant global sea surface temperatures (SSTs) and another in which varying meridional SST gradients are imposed. The results show that the strongest relationship between climate and tropical cyclone formation is with vertical static stability: increased static stability is strongly associated with decreased tropical cyclone formation. Vertical wind shear and midtropospheric vertical velocity also appear to be related to tropical cyclone formation, although below a threshold value of wind shear there appears to be little relationship. The relationship of tropical cyclone formation with maximum potential intensity and mean sea surface temperature is weak and not monotonic. These simulations strongly suggest that vertical static stability should be part of any climate theory of tropical cyclone formation.


2017 ◽  
Author(s):  
Martin Bartels ◽  
Jürgen Titschack ◽  
Kirsten Fahl ◽  
Rüdiger Stein ◽  
Marit-Solveig Seidenkrantz ◽  
...  

Abstract. Atlantic Water (AW) advection plays an important role for climatic, oceanographic and environmental conditions in the eastern Arctic. Situated along the only deep connection between the Atlantic and the Arctic Ocean, the Svalbard Archipelago is an ideal location to reconstruct the past AW advection history and document its linkage with local glacier dynamics, as illustrated in the present study of a sedimentary record from Woodfjorden (northern Spitsbergen) spanning the last ~ 15 500 years. Sedimentological, micropalaeontological and geochemical analyses were used to reconstruct changes in marine environmental conditions, sea-ice cover and glacier activity. Data illustrate a partial breakup of the Svalbard–Barents–Sea Ice Sheet from Heinrich Stadial 1 onwards (until ~ 14.6 ka BP). During the Bølling-Allerød (~ 14.6–12.7 ka BP), AW penetrated as a bottom water mass into the fjord system and contributed significantly to the destabilisation of local glaciers. During the Younger Dryas (~ 12.7–11.7 ka BP), it intruded into intermediate waters while evidence for a glacier advance is lacking. A short-term deepening of the halocline occurred at the very end of this interval. During the early Holocene (~ 11.7–7.8 ka BP), mild conditions led to glacier retreat, a reduced sea-ice cover and increasing sea surface temperatures, with a brief interruption during the Preboreal Oscillation (~ 11.1–10.8 ka BP). During the late Holocene (~ 1.8–0.4 ka BP), a slightly reduced AW inflow and lower sea surface temperatures compared to the early Holocene are reconstructed. Glaciers, which previously retreated to the shallower inner parts of the Woodfjorden system, likely advanced during the late Holocene. In particular, as topographic control in concert with the reduced summer insolation partly decoupled glacier dynamics from AW advection during this recent interval.


2017 ◽  
Vol 13 (12) ◽  
pp. 1717-1749 ◽  
Author(s):  
Martin Bartels ◽  
Jürgen Titschack ◽  
Kirsten Fahl ◽  
Rüdiger Stein ◽  
Marit-Solveig Seidenkrantz ◽  
...  

Abstract. Atlantic Water (AW) advection plays an important role in climatic, oceanographic and environmental conditions in the eastern Arctic. Situated along the only deep connection between the Atlantic and the Arctic oceans, the Svalbard Archipelago is an ideal location to reconstruct the past AW advection history and document its linkage with local glacier dynamics, as illustrated in the present study of a 275 cm long sedimentary record from Woodfjorden (northern Spitsbergen; water depth: 171 m) spanning the last  ∼  15 500 years. Sedimentological, micropalaeontological and geochemical analyses were used to reconstruct changes in marine environmental conditions, sea ice cover and glacier activity. Data illustrate a partial break-up of the Svalbard–Barents Sea Ice Sheet from Heinrich Stadial 1 onwards (until  ∼  14.6 ka). During the Bølling–Allerød ( ∼  14.6–12.7 ka), AW penetrated as a bottom water mass into the fjord system and contributed significantly to the destabilization of local glaciers. During the Younger Dryas ( ∼  12.7–11.7 ka), it intruded into intermediate waters while evidence for a glacier advance is lacking. A short-term deepening of the halocline occurred at the very end of this interval. During the early Holocene ( ∼  11.7–7.8 ka), mild conditions led to glacier retreat, a reduced sea ice cover and increasing sea surface temperatures, with a brief interruption during the Preboreal Oscillation ( ∼  11.1–10.8 ka). Due to a  ∼  6000-year gap, the mid-Holocene is not recorded in this sediment core. During the late Holocene ( ∼  1.8–0.4 ka), a slightly reduced AW inflow and lower sea surface temperatures compared to the early Holocene are reconstructed. Glaciers, which previously retreated to the shallower inner parts of the Woodfjorden system, likely advanced during the late Holocene. In particular, topographic control in concert with the reduced summer insolation partly decoupled glacier dynamics from AW advection during this recent interval.


2012 ◽  
Vol 27 (6) ◽  
pp. 1433-1448 ◽  
Author(s):  
Rachel G. Mauk ◽  
Jay S. Hobgood

Abstract Tropical cyclones with nontropical characteristics are being identified more frequently over the North Atlantic Ocean in recent years. These systems present forecasting challenges because of their hybrid structure. The authors analyze environmental conditions preceding the formation of 20 late-season northeastern Atlantic tropical cyclones identified during the 1975–2005 seasons. A recent tropical storm, Grace (2009), is discussed as a case study. Seventeen of the 20 systems originated from nontropical systems (surface low, frontal weak, and frontal strong). Three tropical cyclones experienced nontropical influences during development despite originating from tropical waves. Ambient sea surface temperatures, relative vorticity, vertical temperature profiles, and wind shear are investigated to identify conditions conducive to tropical cyclone formation. Tropical cyclones developing from nontropical precursors form in environments distinct from the classical tropical cyclone environment. For 17 systems, sea surface temperatures are cooler than 26°C. Stability analysis suggests that convection is shallow. Wind shear decreases for the 850–300-hPa layer in comparison to the 850–200-hPa layer. Most systems still experience shear in excess of 8 m s−1 for the 850–300-hPa layer. It is suggested that late-season tropical cyclones in this region are shallower in vertical extent than typical tropical cyclones, which reduces the impact of strong wind shear in the 850–200-hPa layer.


Sign in / Sign up

Export Citation Format

Share Document