scholarly journals Antifungal Activity of Cyclic Tetrapeptide from Bacillus velezensis CE 100 against Plant Pathogen Colletotrichum gloeosporioides

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 209
Author(s):  
Vantha Choub ◽  
Chaw Ei Htwe Maung ◽  
Sang-Jae Won ◽  
Jae-Hyun Moon ◽  
Kil Yong Kim ◽  
...  

The aim of this study was to investigate the antifungal activity of a cyclic tetrapeptide from Bacillus velezensis CE 100 against anthracnose-causing fungal pathogen Colletotrichum gloeosporioides. Antifungal compound produced by B. velezensis CE 100 was isolated and purified from ethyl acetate extract of B. velezensis CE 100 culture broth using octadecylsilane column chromatography. The purified compound was identified as cyclo-(prolyl-valyl-alanyl-isoleucyl) based on mass spectrometer and nuclear magnetic resonance analyses. This is the first report of the isolation of a cyclic tetrapeptide from B. velezensis CE 100 culture filtrate. Cyclic tetrapeptide displayed strong antifungal activity at concentration of 1000 µg/mL against C. gloeosporioides mycelial growth and spore germination. Our results demonstrate that the antifungal cyclic tetrapeptide from B. velezensis CE 100 has potential in bioprotection against anthracnose disease of plants caused by C. gloeosporioides.

2021 ◽  
Vol 9 (4) ◽  
pp. 839
Author(s):  
Muhammad Rafiullah Khan ◽  
Vanee Chonhenchob ◽  
Chongxing Huang ◽  
Panitee Suwanamornlert

Microorganisms causing anthracnose diseases have a medium to a high level of resistance to the existing fungicides. This study aimed to investigate neem plant extract (propyl disulfide, PD) as an alternative to the current fungicides against mango’s anthracnose. Microorganisms were isolated from decayed mango and identified as Colletotrichum gloeosporioides and Colletotrichum acutatum. Next, a pathogenicity test was conducted and after fulfilling Koch’s postulates, fungi were reisolated from these symptomatic fruits and we thus obtained pure cultures. Then, different concentrations of PD were used against these fungi in vapor and agar diffusion assays. Ethanol and distilled water were served as control treatments. PD significantly (p ≤ 0.05) inhibited more of the mycelial growth of these fungi than both controls. The antifungal activity of PD increased with increasing concentrations. The vapor diffusion assay was more effective in inhibiting the mycelial growth of these fungi than the agar diffusion assay. A good fit (R2, 0.950) of the experimental data in the Gompertz growth model and a significant difference in the model parameters, i.e., lag phase (λ), stationary phase (A) and mycelial growth rate, further showed the antifungal efficacy of PD. Therefore, PD could be the best antimicrobial compound against a wide range of microorganisms.


2020 ◽  
Vol 13 (10) ◽  
Author(s):  
Nguyen Thi Trung ◽  
Nguyen Tien Cuong ◽  
Nguyen Thi Thao ◽  
Dao Thi Mai Anh ◽  
Do Thi Tuyen

Background: Fusarium sp. and Rhizoctonia sp. fungi have been always threats to short-term crops. In Vietnam, corn and soybean suffer serious losses annually. Therefore, it is necessary to utilize an environmentally friendly antifungal compound that is highly effective against phytopathogenic fungi. Pseudomonas sp. is a popular soil bacterial strain and well known for its high antifungal activity. Objectives: This study was carried out to evaluate and assess the antifungal activity of a local bacterial strain namely DA3.1 that was later identified as Pseudomonas aeruginosa. This would be strong scientific evidence to develop an environmentally friendly biocide from a local microorganism strain for commercial use. Methods: The antifungal compound was purified from ethyl acetate extraction of deproteinized cell culture broth by a silica gel column (CH2Cl2/MeOH (0% - 10% MeOH)). The purity of the isolated compound was determined by HPLC, and its molecular structure was elucidated using spectroscopic experiments including one-dimensional (1D) (1H NMR, 13C NMR, DEPT) and two-dimensional (2D) (HMBC and HSQC) spectra. The activity of the purified compound against Fusarium sp. and Rhizoctonia sp. fungi was measured using the PDA-disk diffusion method, and its growth-promoting ability was evaluated using the seed germination test of corn and soybean. Results: The results showed that the antifungal compound produced by Pseudomonas aeruginosa DA3.1 had a retention factor (Rf) of 0.86 on thin layer chromatography (TLC). Based on the evidence of spectral data including proton nuclear magnetic resonance (1H NMR), carbon nuclear magnetic resonance (13C NMR), distortionless enhancement by polarization transfer (DEPT), heteronuclear multiple bond correlation (HMBC), and heteronuclear single quantum coherence (HSQC), the chemical structure was elucidated as phenazine-1-carboxylic. The purified compound showed inhibitory activity against F. oxysporum and R. solani and exhibited the ability of the germination of corn and soybean seeds. The results revealed the benefit of native P. aeruginosa DA3.1 and phenazine-1-carboxylic acid for use as a biocontrol agent, as well as a plant growth promoter. Conclusions: The antifungal compound isolated from local Pseudomonas DA3.1 was identified as phenazine-1-carboxylic acid that posed high antifungal activity and was a plant germination booster.


2011 ◽  
Vol 13 (4) ◽  
pp. 408-412 ◽  
Author(s):  
E.S. Naruzawa ◽  
M.F.S. Papa

This study aimed to determine the antifungal activity of leaf aqueous and hydroethanolic extracts of 10 plants from the Brazilian Cerrado on Colletotrichum gloeosporioides and Corynespora cassiicola. Antifungal activity was measured through the incorporation of each extract in a culture media or spore suspension, at 50% concentration relative to the volume, determining respectively the mycelial growth and the spore germination. Then, the percentages of mycelial growth inhibition and spore germination inhibition were obtained based on the comparison with the control. The extracts had a variable action on the phytopathogens, from mycelial growth stimulation for Aristolochia esperanzae and Byrsonima verbascifolia extracts to complete inhibition of mycelial growth and spore germination for Myracrodruon urundeuva and Lafoensia pacari extracts. M. urundeuva, L. pacari and Caryocar brasiliense leaf extracts had antifungal activity against Colletotrichum gloeosporioides and Corynespora cassiicola; the hydroethanolic extracts presented more antifungal activity than the aqueous extracts, and spore germination of both phytopathogens was more affected than their mycelial growth.


2003 ◽  
Vol 66 (8) ◽  
pp. 1503-1505 ◽  
Author(s):  
DERRICK O. OKULL ◽  
ROBERT B. BEELMAN ◽  
HASSAN GOURAMA

In mushrooms, 10-oxo-trans-8-decenoic acid (ODA) and 1-octen-3-ol are secondary metabolites produced naturally by the enzymatic breakdown of linoleic acid. Both compounds were determined to inhibit the mycelial growth of Penicillium expansum PP497A, a common food spoilage organism, when added to potato dextrose agar medium. ODA and 1-octen-3-ol were inhibitory at concentrations of >1.25 mM (230 μg/g for ODA and 160 μg/g for 1-octen-3-ol). At pH 5.6, 1-octen-3-ol was more inhibitory than ODA. However, at pH 3.5, both compounds (especially ODA) were more inhibitory than they were at pH 5.6. This finding indicates that the undissociated carboxyl of ODA was important for inhibition. At a concentration of 2.5 mM and a pH of 3.5, ODA and 1-octen-3-ol inhibited growth by 43.1 and 41.9%, respectively. An additive effect was observed when both compounds were added at a combined concentration of ≥1.25 mM; when both were added at a combined concentration of 2.5 mM, mycelial growth was inhibited by 48.8 and 72.8% at pHs of 5.6 and 3.5, respectively. Although the antifungal activity levels for these two compounds were lower than those observed for equal molar concentrations of sorbate, a common antifungal compound, these findings indicate that further investigation of the potential of ODA and 1-octen-3-ol for use as natural food preservatives is warranted.


2017 ◽  
Vol 8 ◽  
Author(s):  
Julien Chaillot ◽  
Faiza Tebbji ◽  
Carlos García ◽  
Hugo Wurtele ◽  
René Pelletier ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shabnam Javed ◽  
Zaid Mahmood ◽  
Khalid Mohammed Khan ◽  
Satyajit D. Sarker ◽  
Arshad Javaid ◽  
...  

AbstractAntifungal activity of Monothecabuxifolia methanolic extract and its various fractions were assessed against Macrophominaphaseolina, a soil-borne fungal pathogen of more than 500 vegetal species as well as rare and emerging opportunistic human pathogen. Different concentrations of methanolic extract (3.125 to 200 mg mL−1) inhibited fungal biomass by 39–45%. Isolated n-hexane, chloroform and ethyl acetate fractions suppressed fungal biomass by 32–52%, 29–50% and 29–35%, respectively. Triterpenes lupeol and lupeol acetate (1, 2) were isolated from n-hexane while betulin, β-sitosterol, β-amyrin, oleanolic acid (3–6) were isolated from chloroform fraction. Vanillic acid, protocatechuic acid, kaempferol and quercetin (7–10) were isolated from the ethyl acetate fraction and identified using various spectroscopic techniques namely mass spectroscopy and NMR. Antifungal activity of different concentrations (0.0312 to 2 mg mL−1) of the isolated compounds was evaluated and compared with the activity of a broad spectrum fungicide mancozeb. Different concentrations of mencozeb reduced fungal biomass by 83–85%. Among the isolated compounds lupeol acetate (2) was found the highest antifungal against M.phaseolina followed by betulin (3), vanillic acid (7), protocatechuic acid (8), β-amyrin (5) and oleanolic acid (6) resulting in 79–81%, 77–79%, 74–79%, 67–72%, 68–71% and 68–71%, respectively. Rest of the compounds also showed considerable antifungal activity and reduced M.phaseolina biomass by 41–64%.


2015 ◽  
Vol 13 ◽  
pp. 11-14 ◽  
Author(s):  
Amgad I.M. Khedr ◽  
Gamal A. Mohamed ◽  
Mohamed A.A. Orabi ◽  
Sabrin R.M. Ibrahim ◽  
Koji Yamada

2006 ◽  
Vol 52 (12) ◽  
pp. 1177-1188 ◽  
Author(s):  
N Poritsanos ◽  
C Selin ◽  
W G.D Fernando ◽  
S Nakkeeran ◽  
T.R. de Kievit

Pseudomonas chlororaphis PA23 is a biocontrol agent that protects against the fungal pathogen Sclerotinia sclerotiorum. Employing transposon mutagenesis, we isolated a gacS mutant that no longer exhibited antifungal activity. Pseudomonas chlororaphis PA23 was previously reported to produce the nonvolatile antibiotics phenazine 1-carboxylic acid and 2-hydroxyphenazine. We report here that PA23 produces additional compounds, including protease, lipase, hydrogen cyanide, and siderophores, that may contribute to its biocontrol ability. In the gacS mutant background, generation of these products was markedly reduced or delayed with the exception of siderophores, which were elevated. Not surprisingly, this mutant was unable to protect canola from disease incited by S. sclerotiorum. The gacS mutant was able to sustain itself in the canola phyllosphere, therefore, the loss of biocontrol activity can be attributed to a reduced production of antifungal compounds and not a declining population size. Competition assays between the mutant and wild type revealed equivalent fitness in aged batch culture; consequently, the gacS mutation did not impart a growth advantage in the stationary phase phenotype. Under minimal nutrient conditions, the gacS-deficient strain produced a tenfold less biofilm than the wild type. However, no difference was observed in the ability of the mutant biofilm to protect cells from lethal antibiotic challenge.Key words: Pseudomonas, biocontrol, gacS, fitness, biofilms.


2014 ◽  
Vol 10 (40) ◽  
pp. 410 ◽  
Author(s):  
Chunyuan Li ◽  
DanielG Cox ◽  
Song Huang ◽  
Weijia Ding

Sign in / Sign up

Export Citation Format

Share Document