scholarly journals Current Status and Potential of RNA Interference for the Management of Tomato Spotted Wilt Virus and Thrips Vectors

Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 320
Author(s):  
Alexander Nilon ◽  
Karl Robinson ◽  
Hanu R. Pappu ◽  
Neena Mitter

Tomato spotted wilt virus (TSWV) is the type member of the genus Orthotospovirus in the family Tospoviridae and order Bunyavirales. TSWV, transmitted by several species of thrips, causes significant disease losses to agronomic and horticultural crops worldwide, impacting both the yield and quality of the produce. Management strategies include growing virus-resistant cultivars, cultural practices, and managing thrips vectors through pesticide application. However, numerous studies have reported that TSWV isolates can overcome host-plant resistance, while thrips are developing resistance to pesticides that were once effective. RNA interference (RNAi) offers a means of host defence by using double-stranded (ds) RNA to initiate gene silencing against invading viruses. However, adoption of this approach requires production and use of transgenic plants and thus limits the practical application of RNAi against TSWV and other viruses. To fully utilize the potential of RNAi for virus management at the field level, new and novel approaches are needed. In this review, we summarize RNAi and highlight the potential of topical or exogenous application of RNAi triggers for managing TSWV and thrips vectors.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 240
Author(s):  
Stefano Marino

Environmental conditions and nutritional stress may greatly affect crop performance. Abiotic stresses such as temperature (cold, heat), water (drought, flooding), irradiance, salinity, nutrients, and heavy metals can strongly affect plant growth dynamics and the yield and quality of horticultural products. Such effects have become of greater importance during the course of global climate change. Different strategies and techniques can be used to detect, investigate, and mitigate the effects of environmental and nutritional stress. Horticultural crop management is moving towards digitized, precision management through wireless remote-control solutions, but data analysis, although a traditional approach, remains the basis of stress detection and crop management. This Special Issue summarizes the recent progress in agronomic management strategies to detect and reduce environmental and nutritional stress effects on the yield and quality of horticultural crops.



Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Ying Zhai ◽  
Prabu Gnanasekaran ◽  
Hanu R. Pappu

Tomato spotted wilt virus (TSWV; species Tomato spotted wilt orthotospovirus) is an economically important plant virus that infects multiple horticultural crops on a global scale. TSWV encodes a non-structural protein NSs that acts as a suppressor of host RNA silencing machinery during infection. Despite extensive structural and functional analyses having been carried out on TSWV NSs, its protein-interacting targets in host plants are still largely unknown. Here, we systemically investigated NSs-interacting proteins in Nicotiana benthamiana via affinity purification and mass spectrometry (AP-MS) analysis. Forty-three TSWV NSs-interacting candidates were identified in N. benthamiana. Gene Ontology (GO) and protein–protein interaction (PPI) network analyses were carried out on their closest homologs in tobacco (Nicotiana tabacum), tomatoes (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana). The results showed that NSs preferentially interacts with plant defense-related proteins such as calmodulin (CaM), importin, carbonic anhydrase and two heat shock proteins (HSPs): HSP70 and HSP90. As two major nodes in the PPI network, CaM and importin subunit α were selected for the further verification of their interactions with NSs via yeast two-hybrid (Y2H) screening. Our work suggests that the downstream signaling, transportation and/or metabolic pathways of host-NSs-interacting proteins may play critical roles in NSs-facilitated TSWV infection.



Nature ◽  
1964 ◽  
Vol 203 (4945) ◽  
pp. 671-672 ◽  
Author(s):  
RUPERT J. BEST ◽  
GERARD F. KATEKAR




Plant Disease ◽  
2017 ◽  
Vol 101 (4) ◽  
pp. 637-637 ◽  
Author(s):  
O. Batuman ◽  
T. A. Turini ◽  
P. V. Oliveira ◽  
M. R. Rojas ◽  
M. Macedo ◽  
...  


1999 ◽  
Vol 21 (4) ◽  
pp. 317-325 ◽  
Author(s):  
S. Soler ◽  
M.J. Díez ◽  
S. Roselló ◽  
F. Nuez




Sign in / Sign up

Export Citation Format

Share Document