precise molecular mechanism
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Lingdi Nie ◽  
Dongqing Ma ◽  
John P Quinn ◽  
Minyan Wang

Abstract Background Purinergic P2X7 receptor plays a key role in migraine pathophysiology. Yet precise molecular mechanism underlying P2X7R signaling in migraine remains unclear. This study explores the hypothesis that P2X7 receptor transmits signaling to Src family kinases (SFKs) during cortical spreading depression (CSD) and CSD-induced neuroinflammation. Methods CSD was recorded using electrophysiology in rats, and intrinsic optical imaging in mouse brain slices. Cortical IL-1β and TNFα mRNA expression were detected using qPCR. Glutamate release in mouse brain slices was detected using glutamate assay. Results The data showed that systematic deactivation of SFKs by PP2 reduced cortical susceptibility to CSD in rats and CSD-induced IL-1b and TNF-a gene expression in rat ipsilateral cortices. Consistently, in mouse brain slices, inhibition of SFKs activity by saracatinib and P2X7 receptor by A740003 similarly reduced cortical susceptibility to CSD. When the interaction of P2X7 receptor-SFKs was disrupted by TAT-P2X7, a marked reduction of cortical susceptibility to CSD, CSD-induced IL-1b gene expression and glutamate release were observed in mouse brain slices. The reduced cortical susceptibility to CSD by TAT-P2X7 was restored by NMDA and disrupting Fyn-NMDA interaction using TAT-Fyn (39-57), but not disrupting Src-NMDA receptor using TAT-Src (40-49), reduced cortical susceptibility to CSD. Furthermore, activation of P2X7 receptor by BzATP restored the TAT-Fyn (39-57)-reduced cortical susceptibility to CSD. Conclusion This study reveals that SFKs activity mediates P2X7 receptor pore formation facilitating CSD propagation, CSD-induced neuroinflammation and glutamate release, of particular relevance to migraine.


2021 ◽  
Vol 153 (10) ◽  
Author(s):  
Ida Björkgren ◽  
Sarah Mendoza ◽  
Dong Hwa Chung ◽  
Monika Haoui ◽  
Natalie True Petersen ◽  
...  

The choroid plexus (CP) epithelium secretes cerebrospinal fluid and plays an important role in healthy homeostasis of the brain. CP function can be influenced by sex steroid hormones; however, the precise molecular mechanism of such regulation is not well understood. Here, using whole-cell patch-clamp recordings from male and female murine CP cells, we show that application of progesterone resulted in specific and strong potentiation of the inwardly rectifying potassium channel Kir7.1, an essential protein that is expressed in CP and is required for survival. The potentiation was progesterone specific and independent of other known progesterone receptors expressed in CP. This effect was recapitulated with recombinant Kir7.1, as well as with endogenous Kir7.1 expressed in the retinal pigment epithelium. Current-clamp studies further showed a progesterone-induced hyperpolarization of CP cells. Our results provide evidence of a progesterone-driven control of tissues in which Kir7.1 is present.


Author(s):  
Ezra Kombo Osoro ◽  
Xiaojuan Du ◽  
Dong Liang ◽  
Xi Lan ◽  
Riaz Farooq ◽  
...  

The precise molecular mechanism of autophagy dysfunction in type 1 diabetes is not known. Herein, the role of programmed cell death 4 (PDCD4) in autophagy regulation in the pathogenesis of diabetic kidney disease (DKD) in vivo and in vitro was described. It was found that Pdcd4 mRNA and protein was upregulated in the streptozotocin (STZ)-induced DKD rats. In addition, a unilateral ureteral obstruction mouse model displayed an upregulation of PDCD4 in the disease group. kidney biopsy samples of human DKD patients showed an upregulation of PDCD4. Furthermore, western blotting of the STZ-induced DKD rat tissues displayed a low microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, as compared to the control. It was found that albumin overload in cultured PTEC could upregulate the expression of PDCD4 and p62, and decrease the expression of LC3-II and autophagy-related 5 (Atg5) proteins. The knockout of Pdcd4 in cultured PTECs could lessen albumin-induced dysfunctional autophagy as evidenced by the recovery of Atg5 and LC3-II protein. The forced expression of PDCD4 could further suppress the expression of crucial autophagy-related gene Atg5. Herein, endogenous PDCD4 was shown to promote proteinuria-induced dysfunctional autophagy by negatively regulating Atg5. PDCD4 might therefore be a potential therapeutic target in DKD.


2021 ◽  
Author(s):  
Katherine M. Hannan ◽  
Priscilla Soo ◽  
Mei S. Wong ◽  
Justine K. Lee ◽  
Nadine Hein ◽  
...  

AbstractThe nucleolar surveillance pathway (NSP) monitors nucleolar fidelity and responds to nucleolar stresses (i.e., inactivation of ribosome biogenesis) by mediating the inhibitory binding of ribosomal proteins (RPs) to mouse double minute 2 homolog (MDM2), a nuclear-localised E3 ubiquitin ligase, which results in p53 accumulation. Inappropriate activation of the NSP has been implicated in the pathogenesis of collection of human diseases termed “ribosomopathies”, while drugs that selectively activate the NSP are now in trials for cancer. Despite the clinical significance, the precise molecular mechanism(s) regulating the NSP remain poorly understood. Using genome-wide loss of function screens, we demonstrate the ribosome biogenesis (RiBi) axis as the most potent class of genes whose disruption stabilises p53. Furthermore, we identified a novel suite of genes critical for the NSP, including a novel mammalian protein implicated in 5S ribonucleoprotein particle (5S-RNP) biogenesis, HEATR3. By selectively disabling the NSP, we unexpectedly demonstrate that a functional NSP is required for the ability of all nuclear acting stresses tested, including DNA damage, to robustly induce p53 accumulation. Together, our data demonstrates that the NSP has evolved as the dominant central integrator of stresses that regulate nuclear p53 abundance, thus ensuring RiBi is hardwired to cellular proliferative capacity.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2215
Author(s):  
Hyun Su Kim ◽  
Sungkyun Chung ◽  
Moon-Young Song ◽  
Changjin Lim ◽  
Hyeyoung Shin ◽  
...  

Despite numerous reports on the beneficial effects of catechin or epicatechin contained in tea and cacao extract on human health, a conclusive and precise molecular mechanism has not been elucidated. Metabolism of chemical compounds in gut microbiota recently gained significant attention, and extensive studies have been devoted in this field. In conjunction with these results, our group focused on the anti-inflammatory effects of both enantiomers of DHPV (5-(3′,4′-dihydroxyphenyl)-γ-valerolactone), produced in the intestine by microbiota metabolism, on IEC-6 cells. Divergent and efficient enantioselective synthesis of (S)- and (R)-DHPV was efficiently achieved by cross-metathesis and Sharpless asymmetric dihydroxylation as a key reaction for four steps in 16% and 14% overall yields, respectively. The anti-inflammatory effects of two enantiomers were tested on IEC-6 cells, and we found that (S)-DHPV was more active than (R)-DHPV. This result implicates that the metabolite produced in the gut has beneficial effects on IEC-6 cells of rat intestines, and the chirality of the metabolite is important for its anti-inflammatory activity. This also provided information for the future discovery of novel small molecular therapeutics for the treatment of inflammatory bowel disease.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 153 ◽  
Author(s):  
Jun Imai ◽  
Sayaka Ohashi ◽  
Takahiro Sakai

While the success of dendritic cell (DC) vaccination largely depends on cross-presentation (CP) efficiency, the precise molecular mechanism of CP is not yet characterized. Recent research revealed that endoplasmic reticulum (ER)-associated degradation (ERAD), which was first identified as part of the protein quality control system in the ER, plays a pivotal role in the processing of extracellular proteins in CP. The discovery of ERAD-dependent processing strongly suggests that the properties of extracellular antigens are one of the keys to effective DC vaccination, in addition to DC subsets and the maturation of these cells. In this review, we address recent advances in CP, focusing on the molecular mechanisms of the ERAD-dependent processing of extracellular proteins. As ERAD itself and the ERAD-dependent processing in CP share cellular machinery, enhancing the recognition of extracellular proteins, such as the ERAD substrate, by ex vivo methods may serve to improve the efficacy of DC vaccination.


2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii5-ii5
Author(s):  
Daisuke Yamashita ◽  
Saya Ozaki ◽  
Toru Kondo ◽  
Takeharu Kunieda ◽  
Ichiro Nakano

Abstract Clinical outcomes for patients with glioblastoma (GBM) are extremely poor due to inevitable tumor recurrence even after extensive treatments. These recurrences are thought to manifest from cells located within the tumor edge. Despite this, the precise molecular mechanism governing GBM spatial phenotypic heterogeneity (e.g. edge vs. core) and subsequent tumor recurrence remains poorly elucidated. Here, using patient-derived GBM core and edge tissues, we analyzed transcriptional and metabolic signatures in an effort to determine how GBM facilitates the edge phenotype and its associated recurrence-initiating cells (RICs). In so doing, we unexpectedly identified CD38 as an essential protein in the formation of the edge phenotype and found a CD38-driven interaction between edge GBM cells and neighboring astrocytes that communally develops a GBM edge that is unresectable by surgery and retains RICs. These findings have profound implications for future clinical therapies and provide new mechanistic insights into both tumor progression and recurrence.


2019 ◽  
Vol 20 (18) ◽  
pp. 4559 ◽  
Author(s):  
Banabihari Giri ◽  
Kasey Belanger ◽  
Marissa Seamon ◽  
Eric Bradley ◽  
Sharad Purohit ◽  
...  

In this study, we used macrophage RAW264.7 cells to elucidate the molecular mechanism underlying the anti-inflammatory actions of niacin. Anti-inflammatory actions of niacin and a possible role of its receptor GPR109A have been studied previously. However, the precise molecular mechanism of niacin’s action in reducing inflammation through GPR109A is unknown. Here we observed that niacin reduced the translocation of phosphorylated nuclear kappa B (p-NF-κB) induced by lipopolysaccharide (LPS) in the nucleus of RAW264.7 cells. The reduction in the nuclear translocation in turn decreased the expression of pro-inflammatory cytokines IL-1β, IL-6 in RAW264.7 cells. We observed a decrease in the nuclear translocation of p-NF-κB and the expression of inflammatory cytokines after knockdown of GPR109A in RAW264.7 cells. Our results suggest that these molecular actions of niacin are mediated via its receptor GPR109A (also known as HCAR2) by controlling the translocation of p-NF-κB to the nucleus. Overall, our findings suggest that niacin treatment may have potential in reducing inflammation by targeting GPR109A.


2019 ◽  
Vol 11 (488) ◽  
pp. eaau7116 ◽  
Author(s):  
Shiming Peng ◽  
Wen Xiao ◽  
Dapeng Ju ◽  
Baofa Sun ◽  
Nannan Hou ◽  
...  

Recent studies have established the involvement of the fat mass and obesity-associated gene (FTO) in metabolic disorders such as obesity and diabetes. However, the precise molecular mechanism by which FTO regulates metabolism remains unknown. Here, we used a structure-based virtual screening of U.S. Food and Drug Administration–approved drugs to identify entacapone as a potential FTO inhibitor. Using structural and biochemical studies, we showed that entacapone directly bound to FTO and inhibited FTO activity in vitro. Furthermore, entacapone administration reduced body weight and lowered fasting blood glucose concentrations in diet-induced obese mice. We identified the transcription factor forkhead box protein O1 (FOXO1) mRNA as a direct substrate of FTO, and demonstrated that entacapone elicited its effects on gluconeogenesis in the liver and thermogenesis in adipose tissues in mice by acting on an FTO-FOXO1 regulatory axis.


2019 ◽  
Vol 20 (7) ◽  
pp. 1533 ◽  
Author(s):  
Yucheng Zhao ◽  
Nana Wang ◽  
Ziwei Sui ◽  
Chuanlong Huang ◽  
Zhixiong Zeng ◽  
...  

Methoxylated coumarins represent a large proportion of officinal value coumarins while only one enzyme specific to bergaptol O-methylation (BMT) has been identified to date. The multiple types of methoxylated coumarins indicate that at least one unknown enzyme participates in the O-methylation of other hydroxylated coumarins and remains to be identified. Combined transcriptome and metabonomics analysis revealed that an enzyme similar to caffeic acid O-methyltransferase (COMT-S, S is short for similar) was involved in catalyzing all the hydroxylated coumarins in Peucedanum praeruptorum. However, the precise molecular mechanism of its substrate heterozygosis remains unsolved. Pursuing this question, we determined the crystal structure of COMT-S to clarify its substrate preference. The result revealed that Asn132, Asp271, and Asn325 govern the substrate heterozygosis of COMT-S. A single mutation, such as N132A, determines the catalytic selectivity of hydroxyl groups in esculetin and also causes production differences in bergapten. Evolution-based analysis indicated that BMT was only recently derived as a paralogue of caffeic acid O-methyltransferase (COMT) via gene duplication, occurring before the Apiaceae family divergence between 37 and 100 mya. The present study identified the previously unknown O-methylation steps in coumarin biosynthesis. The crystallographic and mutational studies provided a deeper understanding of the substrate preference, which can be used for producing specific O-methylation coumarins. Moreover, the evolutionary relationship between BMT and COMT-S was clarified to facilitate understanding of evolutionary events in the Apiaceae family.


Sign in / Sign up

Export Citation Format

Share Document