scholarly journals Development of 3D-Printed, Liquisolid and Directly Compressed Glimepiride Tablets, Loaded with Black Seed Oil Self-Nanoemulsifying Drug Delivery System: In Vitro and In Vivo Characterization

2022 ◽  
Vol 15 (1) ◽  
pp. 68
Author(s):  
Tarek A. Ahmed ◽  
Hanadi A. Alotaibi ◽  
Waleed S. Alharbi ◽  
Martin K. Safo ◽  
Khalid M. El-Say

Glimepiride is characterized by an inconsistent dissolution and absorption profile due to its limited aqueous solubility. The aim of this study was to develop glimepiride tablets using three different manufacturing techniques, as well as to study their quality attributes and pharmacokinetics behavior. Black seed oil based self-nanoemulsifying drug delivery system (SNEDDS) formulation was developed and characterized. Glimepiride liquisolid and directly compressed tablets were prepared and their pre-compression and post-compression characteristics were evaluated. Semi-solid pastes loaded with SNEDDS were prepared and used to develop three-dimensional printing tablets utilizing the extrusion technique. In vivo comparative pharmacokinetics study was conducted on Male Wistar rats using a single dose one-period parallel design. The developed SNEDDS formulation showed a particle size of 45.607 ± 4.404 nm, and a glimepiride solubility of 25.002 ± 0.273 mg/mL. All the studied tablet formulations showed acceptable pre-compression and post-compression characteristics and a difference in their in vitro drug release behavior. The surface of the liquisolid and directly compressed tablets was smooth and non-porous, while the three-dimensional printing tablets showed a few porous surfaces. The inner structure of the liquisolid tablets showed some cracks and voids between the incorporated tablet ingredients while that of the three-dimensional printing tablets displayed some tortuosity and a gel porous-like structure. Most of the computed pharmacokinetic parameters improved with the liquisolid and three-dimensional printed tablets. The relative bioavailabilities of the three-dimensional printed and liquisolid tablets compared to commercial product were 121.68% and 113.86%, respectively. Therefore, the liquisolid and three-dimensional printed tablets are promising techniques for modifying glimepiride release and improving in vivo performance but more clinical investigations are required.

2019 ◽  
Vol 9 (4-s) ◽  
pp. 861-866 ◽  
Author(s):  
Lalita Devi ◽  
Punam Gaba ◽  
Hitesh Chopra

Hydrogels possess three-dimensional polymeric network structure and equipped for retaining extensive measure of water or organic fluids. This quality makes them as exceptional candidate for the simulation of extra cellular matrixes. For this the three dimensional printing (3DP) has evolved as the technique for the formation of the digital models. The 3DP is capable for processing the prescriptions and the therapeutic gadgets. One of the technique known as stereolithographic (SLA) printing has shown promising results in formulating the hydrogel based system for fabrication. The SLA acts by cross connecting the saps to shape the polymer matrices. Due to water captured in the gels it is conceivable to create the pre- wetted, medicate hydrogels and gadgets. The 3DP helps in formation of tailor made drug delivery system as per needs of patients. Many of Bioinks has been tried up for the hydrogel formation such as collagen, gelatin, hyaluronan, silk, alginate, and nanocellulose etc. Keywords: 3D Printing, Hydrogel, Steriolithography


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xuezhi Lin ◽  
Xingling Xiao ◽  
Yimeng Wang ◽  
Cheng Gu ◽  
Canbin Wang ◽  
...  

Treatment of acetabular fractures is challenging, not only because of its complicated anatomy but also because of the lack of fitting plates. Personalized titanium alloy plates can be fabricated by selective laser melting (SLM) but the biocompatibility of these three-dimensional printing (3D-printed) plates remains unknown. Plates were manufactured by SLM and their cytocompatibility was assessed by observing the metabolism of L929 fibroblasts incubated with culture medium extracts using a CCK-8 assay and their morphology by light microscopy. Allergenicity was tested using a guinea pig maximization test. In addition, acute systemic toxicity of the 3D-printed plates was determined by injecting extracts from the implants into the tail veins of mice. Finally, the histocompatibility of the plates was investigated by implanting them into the dorsal muscles of rabbits. The in vitro results suggested that cytocompatibility of the 3D-printed plates was similar to that of conventional plates. The in vivo data also demonstrated histocompatibility that was comparable between the two manufacturing techniques. In conclusion, both in vivo and in vitro experiments suggested favorable biocompatibility of 3D-printed titanium alloy plates, indicating that it is a promising option for treatment of acetabular fractures.


2007 ◽  
Vol 25 (6) ◽  
pp. 1347-1354 ◽  
Author(s):  
Heiko Kranz ◽  
Erol Yilmaz ◽  
Gayle A. Brazeau ◽  
Roland Bodmeier

2021 ◽  
Vol 18 ◽  
Author(s):  
Subheet Kumar Jain ◽  
Neha Panchal ◽  
Amrinder Singh ◽  
Shubham Thakur ◽  
Navid Reza Shahtaghi ◽  
...  

Background: Diclofenac sodium (DS) injection is widely used in the management of acute or chronic pain and inflammatory diseases. It incorporates 20 % w/v Transcutol-P as a solubilizer to make the stable injectable formulation. However, the use of Transcutol-P in high concentration leads to adverse effects such as severe nephrotoxicity, etc. Some advancements resulted in the formulation of an aqueous based injectable but that too used benzyl alcohol reported to be toxic for human use. Objective: To develop an injectable self-micro emulsifying drug delivery system (SMEDDS) as a novel carrier of DS for prompt release with better safety and efficacy. Methods: A solubility study was performed with different surfactants and co-surfactants. The conventional stirring method was employed for the formulation of SMEDDS. Detailed in vitro characterization was done for different quality control parameters. In vivo studies were performed using Wistar rats for pharmacokinetic evaluation, toxicological analysis, and analgesic activity. Results: The optimized formulation exhibited good physical stability, ideal globule size (156±0.4 nm), quick release, better therapeutics, and safety, increase in LD50 (221.9 mg/kg) to that of the commercial counterpart (109.9 mg/kg). Further, pre-treatment with optimized formulation reduced the carrageenan-induced rat paw oedema by 88±1.2 % after 4 h, compared to 77±1.6 % inhibition with commercial DS formulation. Moreover, optimized formulation significantly (p<0.05) inhibited the pain sensation in the acetic-acid induced writhing test in mice compared to its commercial equivalent with a better pharmacokinetic profile. Conclusion: The above findings confirmed that liquid SMEDDS could be a successful carrier for the safe and effective delivery of DS


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2920
Author(s):  
Ameeduzzafar Zafar ◽  
Syed Sarim Imam ◽  
Nabil K. Alruwaili ◽  
Omar Awad Alsaidan ◽  
Mohammed H. Elkomy ◽  
...  

Hypertension is a cardiovascular disease that needs long-term medication. Oral delivery is the most common route for the administration of drugs. The present research is to develop piperine self-nanoemulsifying drug delivery system (PE-SNEDDS) using glyceryl monolinoleate (GML), poloxamer 188, and transcutol HP as oil, surfactant, and co-surfactant, respectively. The formulation was optimized by three-factor, three-level Box-Behnken design. PE-SNEDDs were characterized for globule size, emulsification time, stability, in-vitro release, and ex-vivo intestinal permeation study. The optimized PE-SNEDDS (OF3) showed the globule size of 70.34 ± 3.27 nm, percentage transmittance of 99.02 ± 2.02%, and emulsification time of 53 ± 2 s Finally, the formulation OF3 was transformed into solid PE-SNEDDS (S-PE-SNEDDS) using avicel PH-101 as adsorbent. The reconstituted SOF3 showed a globule size of 73.56 ± 3.54 nm, PDI of 0.35 ± 0.03, and zeta potential of −28.12 ± 2.54 mV. SEM image exhibited the PE-SNEDDS completely adsorbed on avicel. Thermal analysis showed the drug was solubilized in oil, surfactant, and co-surfactant. S-PE-SNEDDS formulation showed a more significant (p < 0.05) release (97.87 ± 4.89% in 1 h) than pure PE (27.87 ± 2.65% in 1 h). It also exhibited better antimicrobial activity against S. aureus and P. aeruginosa and antioxidant activity as compared to PE dispersion. The in vivo activity in rats exhibited better (p < 0.05) antihypertensive activity as well as 4.92-fold higher relative bioavailability than pure PE dispersion. Finally, from the results it can be concluded that S-PE-SNEDDS might be a better approach for the oral delivery to improve the absorption and therapeutic activity.


Sign in / Sign up

Export Citation Format

Share Document