scholarly journals Biocompatibility of Bespoke 3D-Printed Titanium Alloy Plates for Treating Acetabular Fractures

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xuezhi Lin ◽  
Xingling Xiao ◽  
Yimeng Wang ◽  
Cheng Gu ◽  
Canbin Wang ◽  
...  

Treatment of acetabular fractures is challenging, not only because of its complicated anatomy but also because of the lack of fitting plates. Personalized titanium alloy plates can be fabricated by selective laser melting (SLM) but the biocompatibility of these three-dimensional printing (3D-printed) plates remains unknown. Plates were manufactured by SLM and their cytocompatibility was assessed by observing the metabolism of L929 fibroblasts incubated with culture medium extracts using a CCK-8 assay and their morphology by light microscopy. Allergenicity was tested using a guinea pig maximization test. In addition, acute systemic toxicity of the 3D-printed plates was determined by injecting extracts from the implants into the tail veins of mice. Finally, the histocompatibility of the plates was investigated by implanting them into the dorsal muscles of rabbits. The in vitro results suggested that cytocompatibility of the 3D-printed plates was similar to that of conventional plates. The in vivo data also demonstrated histocompatibility that was comparable between the two manufacturing techniques. In conclusion, both in vivo and in vitro experiments suggested favorable biocompatibility of 3D-printed titanium alloy plates, indicating that it is a promising option for treatment of acetabular fractures.

Rapid changes and evolutionary market has demanded the new ways of production such as adaptive manufacturing techniques. In this research work different response characteristics such as ultimate tensile strength, surface roughness and energy consumed have been investigated from the work piece fabricated using of three dimensional printing. Taguchi based L27 orthogonal array was used to carry out the investigation study using Minitab software. From experimental investigation it has been depicted that layer resolution is the most significant parameter


2022 ◽  
Vol 15 (1) ◽  
pp. 68
Author(s):  
Tarek A. Ahmed ◽  
Hanadi A. Alotaibi ◽  
Waleed S. Alharbi ◽  
Martin K. Safo ◽  
Khalid M. El-Say

Glimepiride is characterized by an inconsistent dissolution and absorption profile due to its limited aqueous solubility. The aim of this study was to develop glimepiride tablets using three different manufacturing techniques, as well as to study their quality attributes and pharmacokinetics behavior. Black seed oil based self-nanoemulsifying drug delivery system (SNEDDS) formulation was developed and characterized. Glimepiride liquisolid and directly compressed tablets were prepared and their pre-compression and post-compression characteristics were evaluated. Semi-solid pastes loaded with SNEDDS were prepared and used to develop three-dimensional printing tablets utilizing the extrusion technique. In vivo comparative pharmacokinetics study was conducted on Male Wistar rats using a single dose one-period parallel design. The developed SNEDDS formulation showed a particle size of 45.607 ± 4.404 nm, and a glimepiride solubility of 25.002 ± 0.273 mg/mL. All the studied tablet formulations showed acceptable pre-compression and post-compression characteristics and a difference in their in vitro drug release behavior. The surface of the liquisolid and directly compressed tablets was smooth and non-porous, while the three-dimensional printing tablets showed a few porous surfaces. The inner structure of the liquisolid tablets showed some cracks and voids between the incorporated tablet ingredients while that of the three-dimensional printing tablets displayed some tortuosity and a gel porous-like structure. Most of the computed pharmacokinetic parameters improved with the liquisolid and three-dimensional printed tablets. The relative bioavailabilities of the three-dimensional printed and liquisolid tablets compared to commercial product were 121.68% and 113.86%, respectively. Therefore, the liquisolid and three-dimensional printed tablets are promising techniques for modifying glimepiride release and improving in vivo performance but more clinical investigations are required.


2021 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Nuno Venâncio ◽  
Gabriela G. Pereira ◽  
João F. Pinto ◽  
Ana I. Fernandes

Patient-centric therapy is especially important in pediatrics and may be attained by three-dimensional printing. Filaments containing 30% w/w of theophylline were produced by hot-melt extrusion and printed using fused deposition modelling to produce tablets. Here, preliminary results evaluating the effect of infill geometry (cross, star, grid) on drug content and release are reported.


Author(s):  
Diogo José Horst ◽  
Pedro Paulo Andrade Junior

Conductive and magnetic filaments are revolutionizing three-dimensional printing (3DP) to a new level. This review study presents the current state of the art on the subject, summarizing recent high impact studies about main advances regarding the application of 3DP filaments based on carbon nanostructures such as graphene, carbon fibers, nanotubes, and conductive carbon black embedded in a polymer matrix, by reviewing its main characteristics and showing the main producers and also the products available on the market. The availability of inexpensive, reliable, and electrically conductive material will be indispensable for the fabrication of circuits and sensors before the full potential of 3DP for customized products incorporating electrical elements can be fully explored.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 655 ◽  
Author(s):  
Seong-Woo Hong ◽  
Ji-Young Yoon ◽  
Seong-Hwan Kim ◽  
Sun-Kon Lee ◽  
Yong-Rae Kim ◽  
...  

In this study, a soft structure with its stiffness tunable by an external field is proposed. The proposed soft beam structure consists of a skin structure with channels filled with a magnetorheological fluid (MRF). Two specimens of the soft structure are fabricated by three-dimensional printing and fused deposition modeling. In the fabrication, a nozzle is used to obtain channels in the skin of the thermoplastic polyurethane, while another nozzle is used to fill MRF in the channels. The specimens are tested by using a universal tensile machine to evaluate the relationships between the load and deflection under two different conditions, without and with permanent magnets. It is empirically shown that the stiffness of the proposed soft structure can be altered by activating the magnetic field.


2020 ◽  
Vol 57 (8) ◽  
pp. 1041-1044
Author(s):  
Matthias Schlund ◽  
Jean-Marc Levaillant ◽  
Romain Nicot

Parental prenatal counseling is of paramount significance since parents often experience an emotional crisis with feelings of disappointment and helplessness. Three-dimensional (3D) printed model of the unborn child’s face presenting with cleft lip and palate, based on ultrasonographic information, could be used to provide visual 3D information, further enhancing the prospective parent’s comprehension of their unborn child’s pathology and morphology, helping them to be psychologically prepared and improving the communication with the caretaking team. Prospective parents appreciate if prenatal counseling is available with the most detailed information as well as additional resources. The technique necessary to create 3D models after ultrasonographic information is explained, and the related costs are evaluated. The use of such models in parental education is then discussed.


2019 ◽  
Vol 4 (1) ◽  
pp. 26-40 ◽  
Author(s):  
Diogo José Horst ◽  
Pedro Paulo Andrade Junior

Conductive and magnetic filaments are revolutionizing three-dimensional printing (3DP) to a new level. This review study presents the current state of the art on the subject, summarizing recent high impact studies about main advances regarding the application of 3DP filaments based on carbon nanostructures such as graphene, carbon fibers, nanotubes, and conductive carbon black embedded in a polymer matrix, by reviewing its main characteristics and showing the main producers and also the products available on the market. The availability of inexpensive, reliable, and electrically conductive material will be indispensable for the fabrication of circuits and sensors before the full potential of 3DP for customized products incorporating electrical elements can be fully explored.


Sign in / Sign up

Export Citation Format

Share Document