scholarly journals Engineered Cationic Antimicrobial Peptides (eCAPs) to Combat Multidrug-Resistant Bacteria

Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 501 ◽  
Author(s):  
Berthony Deslouches ◽  
Ronald C. Montelaro ◽  
Ken L. Urish ◽  
Yuanpu P. Di

The increasing rate of antibiotic resistance constitutes a global health crisis. Antimicrobial peptides (AMPs) have the property to selectively kill bacteria regardless of resistance to traditional antibiotics. However, several challenges (e.g., reduced activity in the presence of serum and lack of efficacy in vivo) to clinical development need to be overcome. In the last two decades, we have addressed many of those challenges by engineering cationic AMPs de novo for optimization under test conditions that typically inhibit the activities of natural AMPs, including systemic efficacy. We reviewed some of the most promising data of the last two decades in the context of the advancement of the field of helical AMPs toward clinical development.

Amino Acids ◽  
2018 ◽  
Vol 50 (9) ◽  
pp. 1231-1243 ◽  
Author(s):  
Reza Akbari ◽  
Mojdeh Hakemi Vala ◽  
Ali Hashemi ◽  
Hossein Aghazadeh ◽  
Jean-Marc Sabatier ◽  
...  

2007 ◽  
Vol 2 (1) ◽  
pp. 1-33 ◽  
Author(s):  
Andrea Giuliani ◽  
Giovanna Pirri ◽  
Silvia Nicoletto

AbstractAntibiotic resistance is increasing at a rate that far exceeds the pace of new development of drugs. Antimicrobial peptides, both synthetic and from natural sources, have raised interest as pathogens become resistant against conventional antibiotics. Indeed, one of the major strengths of this class of molecules is their ability to kill multidrug-resistant bacteria. Antimicrobial peptides are relatively small (6 to 100 aminoacids), amphipathic molecules of variable length, sequence and structure with activity against a wide range of microorganisms including bacteria, protozoa, yeast, fungi, viruses and even tumor cells. They usually act through relatively non-specific mechanisms resulting in membranolytic activity but they can also stimulate the innate immune response. Several peptides have already entered pre-clinical and clinical trials for the treatment of catheter site infections, cystic fibrosis, acne, wound healing and patients undergoing stem cell transplantation. We review the advantages of these molecules in clinical applications, their disadvantages including their low in vivo stability, high costs of production and the strategies for their discovery and optimization.


2012 ◽  
Vol 57 (1) ◽  
pp. 220-228 ◽  
Author(s):  
Jiexi Yan ◽  
Kairong Wang ◽  
Wen Dang ◽  
Ru Chen ◽  
Junqiu Xie ◽  
...  

ABSTRACTThe extensive use and misuse of antibiotics in medicine result in the emergence of multidrug-resistant bacteria, creating an urgent need for the development of new chemotherapeutic agents. Nowadays, antimicrobial peptides are widely recognized as a class of promising candidates with activity against multidrug-resistant bacteria. NK-18 is a truncated peptide derived from NK-Lysin, an effector of cytotoxic T cells and natural killer cells. In this study, we studied the antibacterial mechanism of action of NK-18. The results revealed that NK-18 has potent antibacterial activity againstEscherichia coliandStaphylococcus aureus. According to our findings, NK-18 is membrane active and its target of action is not only the bacterial membrane but also the DNA in the cytoplasm. The double targets of NK-18 make it difficult for bacteria to generate resistance, which may present a new strategy to defend against multidrug-resistant bacteria and provide a new lead in the design of potent antimicrobial peptides with therapeutic application in the presence of increasing resistance to conventional antibiotics.


2021 ◽  
Author(s):  
Shreeya Mhade ◽  
Stutee Panse ◽  
Gandhar Tendulkar ◽  
Rohit Awate ◽  
Snehal Kadam ◽  
...  

AbstractAntibiotic resistance is a public health threat, and the rise of multidrug-resistant bacteria, including those that form protective biofilms, further compounds this challenge. Antimicrobial peptides (AMPs) have been recognized for their anti-infective properties, including their ability to target processes important for biofilm formation. However, given the vast array of natural and synthetic AMPs, determining potential candidates for anti-biofilm testing is a significant challenge. In this study, we present an in silico approach, based on open-source tools, to identify AMPs with potential anti-biofilm activity. This approach is developed using the sortase-pilin machinery, important for adhesion and biofilm formation, of the multidrug-resistant, biofilm-forming pathogen C. striatum as the target. Using homology modeling, we modeled the structure of the C. striatum sortase C protein, resembling the semi-open lid conformation adopted during pilus biogenesis. Next, we developed a structural library of 5544 natural and synthetic AMPs from sequences in the DRAMP database. From this library, AMPs with known anti-Gram positive activity were filtered, and 100 select AMPs were evaluated for their ability to interact with the sortase C protein using in-silico molecular docking. Based on interacting residues and docking scores, we built a preference scale to categorize candidate AMPs in order of priority for future in vitro and in vivo biofilm studies. The considerations and challenges of our approach, and the resources developed, which includes a search-enabled repository of predicted AMP structures and protein-peptide interaction models relevant to biofilm studies (B-AMP), can be leveraged for similar investigations across other biofilm targets and biofilm-forming pathogens.


Sign in / Sign up

Export Citation Format

Share Document