scholarly journals Progesterone Metabolism by Human and Rat Hepatic and Intestinal Tissue

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1707
Author(s):  
Zoe Coombes ◽  
Katie Plant ◽  
Cristina Freire ◽  
Abdul W. Basit ◽  
Philip Butler ◽  
...  

Following oral administration, the bioavailability of progesterone is low and highly variable. As a result, no clinically relevant, natural progesterone oral formulation is available. After oral delivery, first-pass metabolism initially occurs in the intestines; however, very little information on progesterone metabolism in this organ currently exists. The aim of this study is to investigate the contributions of liver and intestine to progesterone clearance. In the presence of NADPH, a rapid clearance of progesterone was observed in human and rat liver samples (t1/2 2.7 and 2.72 min, respectively). The rate of progesterone depletion in intestine was statistically similar between rat and human (t1/2 197.6 min in rat and 157.2 min in human). However, in the absence of NADPH, progesterone was depleted at a significantly lower rate in rat intestine compared to human. The roles of aldo keto reductases (AKR), xanthine oxidase (XAO) and aldehyde oxidase (AOX) in progesterone metabolism were also investigated. The rate of progesterone depletion was found to be significantly reduced by AKR1C, 1D1 and 1B1 in human liver and by AKR1B1 in human intestine. The inhibition of AOX also caused a significant reduction in progesterone degradation in human liver, whereas no change was observed in the presence of an XAO inhibitor. Understanding the kinetics of intestinal as well as liver metabolism is important for the future development of progesterone oral formulations. This novel information can inform decisions on the development of targeted formulations and help predict dosage regimens.

1981 ◽  
Vol 20 (02) ◽  
pp. 90-93
Author(s):  
P.B. Parab ◽  
U.R. Raikar ◽  
R.D. Ganatra ◽  
M. C. Patel

Phenolphthalexon, a compound with iminodiacetic acid as a functional group, has been labelled with 113mIn to high chemical purity and its usefulness in studies of biliary excretion patency has been studied. Organ distribution of 113mIn-phenolphthalexon in mice was characterized by high liver uptake (50.8% of the administered dose after 5 min) and rapid clearance through the gall bladder. An animal model for studying obstruction of biliary excretion has been developed. Data on the kinetics of the radiopharmaceutical were obtained by collecting in-vivo data through an on-line computer.


Xenobiotica ◽  
1996 ◽  
Vol 26 (1) ◽  
pp. 1035-1055 ◽  
Author(s):  
A. A. Acheampong ◽  
D-S. Chien ◽  
S. Lam ◽  
S. Vekich ◽  
A. Breau ◽  
...  

2020 ◽  
pp. 7-24
Author(s):  
Zhanna Kozlova ◽  
Ivan Krasnyuk ◽  
Yuliya Lebedeva ◽  
Ekaterina Odintsova

Oral mucosal drug delivery is an alternative method of systemic delivery with several advantages over both injectable and enteral methods. Drugs that are absorbed through the oral mucosa directly enter the systemic circulation, passing through the gastrointestinal tract and first-pass metabolism in the liver due to oral mucosa being highly vascularised. This results in rapid onset of action for some drugs because of a more comfortable and convenient way of delivery than the intravenous one. But not all drugs can be administered through the oral mucosa due to characteristics of the oral mucosa and physical and chemical properties of the drug.


2007 ◽  
Vol 35 (11) ◽  
pp. 1990-1995 ◽  
Author(s):  
Ragini Vuppugalla ◽  
Shu-Ying Chang ◽  
Hongjian Zhang ◽  
Punit H. Marathe ◽  
David A. Rodrigues

Xenobiotica ◽  
1996 ◽  
Vol 26 (10) ◽  
pp. 1035-1055 ◽  
Author(s):  
A. A. Acheampong ◽  
D-S. Chien ◽  
S. Lam ◽  
S. Vekich ◽  
A. Breau ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 561 ◽  
Author(s):  
Maharjan ◽  
Kim ◽  
Jin ◽  
Ko ◽  
Song ◽  
...  

As a posterior ocular disease, wet age-related macular degeneration (WAMD) has been known to be related to vision loss, accompanying ocular complications. The intravitreous injection of VEGF antibodies has been reported to be an effective treatment to relieve symptoms of WAMD. However, the limitations of this treatment are high costs and invasiveness. For this reason, oral delivery route can be considered as a cost-effective way and the safest method to deliver drug molecules to the eyes. Accordingly, ursodeoxycholic acid (UDCA) was included in the oral formulation as the potential substance for the cure of WAMD in the animal model. Various pharmacological activities, such as antioxidant or anti-inflammatory effects, have been reported for UDCA and recent reports support the effects of UDCA in ocular treatment. However, due to poor water solubility and low pKa (around 5.0), it has been challenging to formulate aqueous solution of UDCA in the neutral pH range. In the present study, we confirmed the aqueous solubility of the oral UDCA formulation and performed a preclinical study, including pharmacokinetic profiling and WAMD model efficacy study in mice after oral administration of the drug solution. The results demonstrated that the formulation improved bioavailability of UDCA and efficiently delivered UDCA to the eye tissues after oral absorption. UDCA formulation was found to have inhibitory effects of choroidal neovascularization with a functional recovery in mice retinas. Taken together, our results suggest that the oral UDCA formulation could be used as a potent supplement for the cure of WAMD and related retinal diseases.


2019 ◽  
Vol 92 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Goran Benković ◽  
Hrvoje Rimac ◽  
Željan Maleš ◽  
Siniša Tomić ◽  
Zoran Lončar ◽  
...  

One of the most important groups of metabolic enzymes is cytochrome P450 superfamily. These enzymes are important in terms of the catalytic diversity and the large number of xenobiotics that are detoxified or activated by converting to reactive metabolites. Flavonoids are xenobiotics to which humans are exposed through diet. Data on their oxidative metabolism mediated by cytochromes P450 are limited. The aim of this study was to determine the enzymatic kinetics of O-demethylation and aromatic hydroxylation of flavonoid aglycons on recombinant cytochrome P450 enzymes and human liver microsomes systems. The study was performed on ten flavonoids, namely 3,7-dihydroxyflavone, 7-hydroxyflavone, acacetin, apigenin, flavone, galangin, kaempferol, naringenin, sakuranetin, and tangeretin using liquid chromatography coupled with mass spectrometry and UV detector. Most relevant enzyme involved in metabolism of flavonoid aglycons is CYP1A2, and its catalytic effectiveness ranges from 0.5 to 2.9 × 106 M–1 min–1. Having in mind high expression and involvement of CYP1A2 in metabolism of xenobiotics including drugs, and its intraindividual differences in expression and activity, potential of drug-flavonoid competitive interactions/inhibitions should be considered when consuming dietary supplement and foods rich in flavonoids.


Sign in / Sign up

Export Citation Format

Share Document