cell microencapsulation
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Cagla Yarkent ◽  
Bahar Aslanbay Guler ◽  
Ceren Gurlek ◽  
Yaprak Sahin ◽  
Ayse Kose ◽  
...  

Algae are recognized as the main producer of commercial alginate. Alginate produced using algae is located in the walls and intracellular regions of their cells. Its properties vary depending on the species, growing and harvesting seasons, and extraction methods. Alginate has attracted the attention of several industries, thanks to its unique properties such as its biodegradability, biocompatibility, renewability and lack of toxicity features. For example, it is considered a good encapsulation agent due to the transparent nature of the alginate matrices. Also, this biopolymer is recognized as a functional food in the food industry. It can be tolerated easily in human body and has the ability to reduce the risk of chronic diseases. Besides, it is used as an abrasive agent, antioxidant, and thickening and stabilizing agents in cosmetic and pharmaceutic industries. Generally, it is used in emulsion systems and wound dressing patches. Furthermore, this polysaccharide has the potential to be used in green nanotechnologies as a drug delivery vehicle via cell microencapsulation. Moreover, it is suitable to adopt as a coagulant due to its wide range of flocculation dose and high shear stability. In this chapter, the mentioned usage areas of algal alginate are explained in more detail.


2021 ◽  
Vol 12 (4) ◽  
pp. 68
Author(s):  
Armin Mooranian ◽  
Melissa Jones ◽  
Corina Mihaela Ionescu ◽  
Daniel Walker ◽  
Susbin Raj Wagle ◽  
...  

Pancreatic β-cell loss and failure with subsequent deficiency of insulin production is the hallmark of type 1 diabetes (T1D) and late-stage type 2 diabetes (T2D). Despite the availability of parental insulin, serious complications of both types are profound and endemic. One approach to therapy and a potential cure is the immunoisolation of β cells via artificial cell microencapsulation (ACM), with ongoing promising results in human and animal studies that do not depend on immunosuppressive regimens. However, significant challenges remain in the formulation and delivery platforms and potential immunogenicity issues. Additionally, the level of impact on key metabolic and disease biomarkers and long-term benefits from human and animal studies stemming from the encapsulation and delivery of these cells is a subject of continuing debate. The purpose of this review is to summarise key advances in this field of islet transplantation using ACM and to explore future strategies, limitations, and hurdles as well as upcoming developments utilising bioengineering and current clinical trials.


Nano LIFE ◽  
2021 ◽  
pp. 2141003
Author(s):  
Qilong Zhao ◽  
Min Wang

Biomanufacturing of cell-laden scaffolds with biomimetic cell-scaffold organizations resembling the structures and anatomy of human body tissues and organs holds great promise in tissue engineering and regenerative medicine. In human body tissues and organs, specific types of cells are supported by nanofibrous extracellular matrix (ECM) in well-defined three-dimensional (3D) manners. Electrospinning is a facile and effective technique for producing nanofibrous scaffolds, which exhibit high similarities in the structure compared to ECM that offers structural and mechanical supports to cells in the human body. The incorporation within the electrospun nanofibrous scaffolds has therefore been considered as a promising approach for biomanufacturing of cell-laden scaffolds with tissue-mimicking structures. However, limited by low controllability of conventional cell seeding strategies and small sizes of interconnected pores of normal electrospun scaffolds, it is highly difficult to incorporate living cells within electrospun scaffolds on demand and results in cell-laden scaffolds with desirable 3D cell-scaffold organization. With recent advances in electrospinning and electrospraying with cells, it is visible to directly incorporate living cells within scaffolds via cell microencapsulation approaches and therefore offer promising alternatives for biomanufacturing of cell-laden scaffolds with tissue-mimicking structures. In this review, we will summarize the applications and challenges of cell seeding strategies and cell microencapsulation technologies for incorporating cells within electrospun scaffolds. Some techniques with high potentials to be integrated with electrospinning for forming the cell-laden scaffolds in continuous and noncontact manners, including aerodynamic-assisted cell microencapsulation, hydrodynamic-assisted cell microencapsulation and electrohydrodynamic-assisted cell microencapsulation (i.e., cell electrospinning and cell electrospraying), are highlighted. In particular, the cell microencapsulation and the subsequent formation of cell-laden scaffolds directly by electrospinning and electrospraying with living cells are overviewed in a detailed manner. Finally, the perspective and challenges of electrospinning and electrospraying with cells for biomanufacturing of cell-laden scaffolds with tissue-mimicking structures are discussed.


Author(s):  
Tania B. Lopez-Mendez ◽  
Edorta Santos-Vizcaino ◽  
Jose Luis Pedraz ◽  
Gorka Orive ◽  
Rosa Maria Hernandez

2021 ◽  
pp. 088532822198897
Author(s):  
Ana Paula Santos ◽  
Sylvie Swyngedau Chevallier ◽  
Bart de Haan ◽  
Paul de Vos ◽  
Denis Poncelet

Cell-encapsulation is used for preventing therapeutic cells from being rejected by the host. The technology to encapsulate cells in immunoprotective biomaterials, such as alginate, commonly involves application of an electrostatic droplet generator for reproducible manufacturing droplets of similar size and with similar surface properties. As many factors influencing droplet formation are still unknown, we investigated the impact of several parameters and fitted them to equations to make procedures more reproducible and allow optimal control of capsule size and properties. We demonstrate that droplet size is dependent on an interplay between the critical electric potential (Uc,), the needle size, and the distance between the needle and the gelation bath, and that it can be predicted with the equations proposed. The droplet formation was meticulously studied and followed by a high-speed camera. The X-ray photoelectron analysis demonstrated optimal gelation and substitution of sodium with calcium on alginate surfaces while the atomic force microscopy analysis demonstrated a low but considerable variation in surface roughness and low surface stiffness. Our study shows the importance of documenting critical parameters to guarantee reproducible manufacturing of beads with constant and adequate size and preventing batch-to-batch variations.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5090
Author(s):  
Miriam Salles Pereira ◽  
Liana Monteiro da Fonseca Cardoso ◽  
Tatiane Barreto da Silva ◽  
Ayla Josma Teixeira ◽  
Saul Eliahú Mizrahi ◽  
...  

Microencapsulation is a widely studied cell therapy and tissue bioengineering technique, since it is capable of creating an immune-privileged site, protecting encapsulated cells from the host immune system. Several polymers have been tested, but sodium alginate is in widespread use for cell encapsulation applications, due to its low toxicity and easy manipulation. Different cell encapsulation methods have been described in the literature using pressure differences or electrostatic changes with high cost commercial devices (about 30,000 US dollars). Herein, a low-cost device (about 100 US dollars) that can be created by commercial syringes or 3D printer devices has been developed. The capsules, whose diameter is around 500 µm and can decrease or increase according to the pressure applied to the system, is able to maintain cells viable and functional. The hydrogel porosity of the capsule indicates that the immune system is not capable of destroying host cells, demonstrating that new studies can be developed for cell therapy at low cost with microencapsulation production. This device may aid pre-clinical and clinical projects in low- and middle-income countries and is lined up with open source equipment devices.


Author(s):  
Tania B. Lopez-Mendez ◽  
Edorta Santos-Vizcaino ◽  
Jose Luis Pedraz ◽  
Rosa Maria Hernandez ◽  
Gorka Orive

Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 755 ◽  
Author(s):  
Shota Toda ◽  
Artin Fattah ◽  
Kenta Asawa ◽  
Naoko Nakamura ◽  
Kristina N. Ekdahl ◽  
...  

Microencapsulation of islets can protect against immune reactions from the host immune system after transplantation. However, sufficient numbers of islets cannot be transplanted due to the increase of the size and total volume. Therefore, thin and stable polymer membranes are required for the microencapsulation. Here, we undertook the cell microencapsulation using poly(ethylene glycol)-conjugated phospholipid (PEG-lipid) and layer-by-layer membrane of multiple-arm PEG. In order to examine the membrane stability, we used different molecular weights of 4-arm PEG (10k, 20k and 40k)-Mal to examine the influence on the polymer membrane stability. We found that the polymer membrane made of 4-arm PEG(40k)-Mal showed the highest stability on the cell surface. Also, the polymer membrane did not disturb the insulin secretion from beta cells.


Sign in / Sign up

Export Citation Format

Share Document