scholarly journals Hydrophilic Excipient-Independent Drug Release from SLA-Printed Pellets

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1717
Author(s):  
Lei Xu ◽  
Qingliang Yang ◽  
Wei Qiang ◽  
Huijie Li ◽  
Weizhen Zhong ◽  
...  

Three-dimensional (3D) printing technology, specifically stereolithography (SLA) technology, has recently created exciting possibilities for the design and fabrication of sophisticated dosages for oral administration, paving a practical way to precisely manufacture customized pharmaceutical dosages with both personalized properties and sustained drug release behavior. However, the sustained drug release achieved in prior studies largely relies on the presence of hydrophilic excipients in the printing formulation, which unfortunately impedes the printability and formability of the corresponding printing formulations. The current study developed and prepared mini-sized oral pellets using the SLA technique and successfully accomplished a hydrophilic excipient-independent drug release behavior. With ibuprofen as the model drug, the customized photopolymerizable printing formulation included polyethylene glycol diacrylate (PEGDA) as a monomer and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator. The produced mini-sized pellets were thoroughly investigated for various factors, including their printability, physical properties, microscopic features, drug content, and drug-release profiles. The drug release profiles from the printed pellets that were larger size (3 mm and 6 mm) followed the Ritger–Peppas model, demonstrating that the release was influenced by both the diffusion of the dissolved drug and by the erosion of the hydrophilic excipients (PEG400). The profiles from the smaller printed pellets (1 mm and 2 mm) followed first release kinetics, not only illustrating that the release was impacted only by drug diffusion, but also indicating that there is a size boundary between the dependent and independent hydrophilic excipients. These results could create practical benefits to the pharmaceutical industry in terms of the design and development personalized dosages using the SLA printing technique with controllable drug release by manipulating size alone.

2018 ◽  
Vol 6 (7) ◽  
pp. 1035-1043 ◽  
Author(s):  
Jian He ◽  
Lisha Ai ◽  
Xin Liu ◽  
Hao Huang ◽  
Yuebin Li ◽  
...  

The NIR-laser-driven plasmonic photothermal and sustained drug release behavior of CuS–PTX/SiO2 nanocapsules show great synergistic chemo-photothermal therapeutic effects on cancer cells in vitro and in vivo.


2018 ◽  
Vol 12 (6) ◽  
pp. 822-826
Author(s):  
Lei Jiang ◽  
Chen Su ◽  
Zhongjie Zhu ◽  
Yanyi Wen ◽  
Shan Ye ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 6287-6298 ◽  
Author(s):  
Yuanfeng Wei ◽  
Jianjun Zhang ◽  
Yazhen Zheng ◽  
Yaxiang Gong ◽  
Meng Fu ◽  
...  

Cubosomes with surface cross-linked chitosan exhibit anti-digestion effect, sustained drug release behavior, and significantly enhanced oral bioavailability of vinpocetine.


2010 ◽  
Vol 81 (2) ◽  
pp. 213-218 ◽  
Author(s):  
Junjun Tan ◽  
Yanxiang Li ◽  
Ruigang Liu ◽  
Hongliang Kang ◽  
Deqian Wang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2591
Author(s):  
Thuan Thi Duong ◽  
Antti Isomäki ◽  
Urve Paaver ◽  
Ivo Laidmäe ◽  
Arvo Tõnisoo ◽  
...  

Berberine (BBR) is a poorly water-soluble quaternary isoquinoline alkaloid of plant origin with potential uses in the drug therapy of hypercholesterolemia. To tackle the limitations associated with the oral therapeutic use of BBR (such as a first-pass metabolism and poor absorption), BBR-loaded liposomes were fabricated by ethanol-injection and thin-film hydration methods. The size and size distribution, polydispersity index (PDI), solid-state properties, entrapment efficiency (EE) and in vitro drug release of liposomes were investigated. The BBR-loaded liposomes prepared by ethanol-injection and thin-film hydration methods presented an average liposome size ranging from 50 nm to 244 nm and from 111 nm to 449 nm, respectively. The PDI values for the liposomes were less than 0.3, suggesting a narrow size distribution. The EE of liposomes ranged from 56% to 92%. Poorly water-soluble BBR was found to accumulate in the bi-layered phospholipid membrane of the liposomes prepared by the thin-film hydration method. The BBR-loaded liposomes generated by both nanofabrication methods presented extended drug release behavior in vitro. In conclusion, both ethanol-injection and thin-film hydration nanofabrication methods are feasible for generating BBR-loaded oral liposomes with a uniform size, high EE and modified drug release behavior in vitro.


RSC Advances ◽  
2016 ◽  
Vol 6 (80) ◽  
pp. 76237-76245 ◽  
Author(s):  
M. Sun ◽  
M. Chen ◽  
M. Wang ◽  
J. Hansen ◽  
A. Baatrup ◽  
...  

This pre-clinical study presented a dual function of a doxorubicin-loaded scaffold for both chemotherapeutic agent delivery and bone formation.


Sign in / Sign up

Export Citation Format

Share Document