scholarly journals Use of an In Vitro Skin Parallel Artificial Membrane Assay (Skin-PAMPA) as a Screening Tool to Compare Transdermal Permeability of Model Compound 4-Phenylethyl-Resorcinol Dissolved in Different Solvents

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1758
Author(s):  
Bálint Sinkó ◽  
Vivien Bárdos ◽  
Dániel Vesztergombi ◽  
Szabina Kádár ◽  
Petra Malcsiner ◽  
...  

Absorption through the skin of topically applied chemicals is relevant for both formulation development and safety assessment, especially in the early stages of development. However, the supply of human skin is limited, and the traditional in vitro methods are of low throughput. As an alternative, an artificial membrane-based Skin Parallel Artificial Membrane Permeability Assay (Skin-PAMPA) has been developed to mimic the permeability through the stratum corneum. In this study, this assay was used to measure the permeability of a model compound, 4-phenylethyl-resorcinol (PER), dissolved in 13 different solvents that are commonly used in cosmetic formulation development. The study was performed at concentrations close to the saturated solution of PER in each solvent to investigate the maximum thermodynamic potential of the solvents. The permeability of PER in selected solvents was also measured on ex vivo pig skin for comparison. Pig ear skin is an accepted alternative model of human skin. The permeability coefficient, which is independent of the concentration of the applied solution, showed a good correlation (R2 = 0.844) between the Skin-PAMPA and the pig skin permeation data. Our results support the use of the Skin-PAMPA to screen the suitability of different solvents for non-polar compounds at an early stage of formulation development.

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Mahmoud Ameri ◽  
Hayley Lewis ◽  
Paul Lehman

Franz cell studies, utilizing different human skin and an artificial membrane, evaluating the influence of skin model on permeation of zolmitriptan coated on an array of titanium microprojections, were evaluated. Full thickness and dermatomed ex vivo human skin, as well as a synthetic hydrophobic membrane (Strat-M®), were assessed. It was found that the choice of model demonstrated different absorption kinetics for the permeation of zolmitriptan. For the synthetic membrane only 11% of the zolmitriptan coated dose permeated into the receptor media, whilst for the dermatomed skin 85% permeated into the receptor. The permeation of zolmitriptan through full thickness skin had a significantly different absorption profile and time to maximum flux in comparison to the dermatomed skin and synthetic model. On the basis of these results dermatomed skin may be a better estimate of in vivo performance of drug-coated metallic microprojections.


2015 ◽  
Vol 12 (2) ◽  
pp. 157-165 ◽  
Author(s):  
Priscila de Almeida ◽  
Michele Alves ◽  
Hudson Polonini ◽  
Stephane Calixto ◽  
Tiago Braga Gomes ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Gyati Shilakari Asthana ◽  
Abhay Asthana ◽  
Davinder Singh ◽  
Parveen Kumar Sharma

The present study aimed to investigate the delivery potential of Etodolac (ETD) containing topical niosomal gel. Niosomal formulations were prepared by thin film hydration method at various ratios of cholesterol and Span 60 and were evaluated with respect to particle size, shape, entrapment efficiency, and in vitro characteristics. Dicetyl phosphate (DCP) was also added in the niosomal formulation. Mean particle size of niosomal formulation was found to be in the range of 2 μm to 4 μm. Niosomal formulation N2 (1 : 1) ratio of cholesterol and surfactant displayed good entrapment efficiency (96.72%). TEM analyses showed that niosomal formulation was spherical in shape. Niosomal formulation (N2) displayed high percentage of drug release after 24 h (94.91) at (1 : 1) ratio of cholesterol : surfactant. Further selected niosomal formulation was used to formulate topical gel and was characterized with respect to its various parameters such as pH, viscosity, spreadability, ex vivo study, and in vivo potential permeation. Ex vivo study showed that niosomal gel possessed better skin permeation study than the plain topical gel. Further in vivo study revealed good inhibition of inflammation in case of topical niosomal gel than plain gel and niosomal formulation. The present study suggested that topical niosomal gel formulations provide sustained and prolonged delivery of drug.


2006 ◽  
Vol 58 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Yu-Kyoung Oh ◽  
Mi Young Kim ◽  
Jee-Young Shin ◽  
Tae Woon Kim ◽  
Mi-Ok Yun ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 22
Author(s):  
María Rincón ◽  
Marcelle Silva-Abreu ◽  
Lupe Carolina Espinoza ◽  
Lilian Sosa ◽  
Ana Cristina Calpena ◽  
...  

A biocompatible topical thermo-reversible hydrogel containing Pranoprofen (PF)-loaded nanostructured lipid carriers (NLCs) was studied as an innovative strategy for the topical treatment of skin inflammatory diseases. The PF-NLCs-F127 hydrogel was characterized physiochemically and short-time stability tests were carried out over 60 days. In vitro release and ex vivo human skin permeation studies were carried out in Franz diffusion cells. In addition, a cytotoxicity assay was studied using the HaCat cell line and in vivo tolerance study was performed in humans by evaluating the biomechanical properties. The anti-inflammatory effect of the PF-NLCs-F127 was evaluated in adult male Sprague Daw-ley® rats using a model of inflammation induced by the topical application of xylol for 1 h. The developed PF-NLCs-F127 exhibited a heterogeneous structure with spherical PF-NLCs in the hydrogel. Furthermore, a thermo-reversible behaviour was determined with a gelling temperature of 32.5 °C, being close to human cutaneous temperature and thus favouring the retention of PF. Furthermore, in the ex vivo study, the amount of PF retained and detected in human skin was high and no systemic effects were observed. The hydrogel was found to be non-cytotoxic, showing cell viability of around 95%. The PF-NLCs-F127 is shown to be well tolerated and no signs of irritancy or alterations of the skin’s biophysical properties were detected. The topical application of PF-NLCs-F127 hydrogel was shown to be efficient in an inflammatory animal model, preventing the loss of stratum corneum and reducing the presence of leukocyte infiltration. The results from this study confirm that the developed hydrogel is a suitable drug delivery carrier for the transdermal delivery of PF, improving its dermal retention, opening the possibility of using it as a promising candidate and safer alternative to topical treatment for local skin inflammation and indicating that it could be useful in the clinical environment.


2021 ◽  
Author(s):  
Yipu Wang ◽  
Dong Mei ◽  
Xinyi Zhang ◽  
Da-Hui Qu ◽  
Ju Mei ◽  
...  

With increase of social aging, Alzheimer's disease (AD) has been one of the serious diseases threatening human health. The occurrence of A<i>β </i>fibrils<i> </i>or plaques is recognized as the hallmark of AD.<i> </i>Currently, optical imaging has stood out to be a promising technique for the imaging of A<i>β</i> fibrils/plaques and the diagnosis of AD. However, restricted by their poor blood-brain barrier (BBB) penetrability, short-wavelength excitation and emission, and aggregation-caused quenching (ACQ) effect, the clinically used gold-standard optical probes such as <a>thioflavin</a> T (ThT) and thioflavin S (ThS), are not effective enough in the early diagnosis of AD <i>in vivo</i>. Herein, we put forward an “all-in-one” design principle and demonstrate its feasibility in developing high-performance fluorescent probes which are specific to A<i>β</i> fibrils/plaques and promising for super-early <i>in</i>-<i>vivo</i> diagnosis of AD. As a proof of concept, a simple rod-like amphiphilic NIR fluorescent AIEgen, i.e., AIE-CNPy-AD, is developed by taking the specificity, BBB penetration ability, deep-tissue penetration capacity, high signal-to-noise ratio (SNR) into consideration. AIE-CNPy-AD is constituted by connecting the electron-donating and accepting moieties through single bonds and tagging with a propanesulfonate tail, giving rise to the NIR fluorescence, aggregation-induced emission (AIE) effect, amphiphilicity, and rod-like structure, which in turn result in high binding-affinity and excellent specificity to A<i>β</i> fibrils/plaques, satisfactory ability to penetrate BBB and deep tissues, ultrahigh SNR and sensitivity, and high-fidelity imaging capability. <i>In-vitro, ex-vivo,</i> and <i>in-vivo</i> <a>identifying of A<i>β</i> fibrils/plaques</a> in different strains of mice indicate that AIE-CNPy-AD holds the universality to the detection of A<i>β</i> fibrils/plaques. It is noteworthy that AIE-CNPy-AD is even able to trace the small and sparsely distributed A<i>β</i> fibrils/plaques in very young AD model mice such as 4-month-old APP/PS1 mice which are reported to be the youngest mice to have A<i>β</i> deposits in brains, suggesting its great potential in diagnosis and intervention of AD at a super-early stage.


2008 ◽  
Vol 52 (10) ◽  
pp. 3633-3636 ◽  
Author(s):  
T. J. Karpanen ◽  
T. Worthington ◽  
B. R. Conway ◽  
A. C. Hilton ◽  
T. S. J. Elliott ◽  
...  

ABSTRACT This study evaluated a model of skin permeation to determine the depth of delivery of chlorhexidine into full-thickness excised human skin following topical application of 2% (wt/vol) aqueous chlorhexidine digluconate. Skin permeation studies were performed on full-thickness human skin using Franz diffusion cells with exposure to chlorhexidine for 2 min, 30 min, and 24 h. The concentration of chlorhexidine extracted from skin sections was determined to a depth of 1,500 μm following serial sectioning of the skin using a microtome and analysis by high-performance liquid chromatography. Poor penetration of chlorhexidine into skin following 2-min and 30-min exposures to chlorhexidine was observed (0.157 ± 0.047 and 0.077 ± 0.015 μg/mg tissue within the top 100 μm), and levels of chlorhexidine were minimal at deeper skin depths (less than 0.002 μg/mg tissue below 300 μm). After 24 h of exposure, there was more chlorhexidine within the upper 100-μm sections (7.88 ± 1.37 μg/mg tissue); however, the levels remained low (less than 1 μg/mg tissue) at depths below 300 μm. There was no detectable penetration through the full-thickness skin. The model presented in this study can be used to assess the permeation of antiseptic agents through various layers of skin in vitro. Aqueous chlorhexidine demonstrated poor permeation into the deeper layers of the skin, which may restrict the efficacy of skin antisepsis with this agent. This study lays the foundation for further research in adopting alternative strategies for enhanced skin antisepsis in clinical practice.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 889
Author(s):  
Paola Bustos-Salgado ◽  
Berenice Andrade-Carrera ◽  
María Luisa Garduño-Ramírez ◽  
Helen Alvarado ◽  
Ana Calpena-Campmany

Prenylated flavanones are polyphenols that have diverse biological properties. The present paper focuses on a HPLC method validation for the quantification of prenylated flavanones (2S)-5,7-dihydroxy-6-(3-methyl-2-buten-1-yl)-2-phenyl-2,3-dihydro-4H-1Benzopyran-4-one 1 and derivatives (2S)-5,7-bis(acetyloxy)-6-(3-methyl-2-buten-1-yl)-2-phenyl-2,3-dihydro-4H-1-Benzopyran-4-one A; (2S)-5-hydroxy-7-methoxy-6-(3-methyl-2-buten-1-yl)-2-phenyl-2,3-dihydro-4H-1-Benzopyran-4-one B; (8S)-5-hydroxy-2,2-dimethyl-8-phenyl-3,4,7,8-tetrahydro-2H,6H-Benzo[1,2-b:5,4-bˈ]dipyran-6-one C; and (8S)-5-hydroxy-2,2-dimethyl-8-phenyl-7,8-dihydro-2H,6H-Benzo[1,2-b:5,4-bˈ]dipyran-6-one D applied in biopharmaceutic studies. The linear relationships are proven with significant correlation coefficients (R2 ˃ 0.999) in the range of 1.56 to 200 μg/mL with low limits of detection and quantification, on average of 0.4 μg/mL and 1.2 μg/mL, respectively. The validation method used in this work is highly accurate and precise, with values lower than 15%. The relative standard deviation values of repeatability of the instrumental system are demonstrated with less than 0.6% for all studied flavanones. Therefore, the applicability method of the quantification of the prenylated flavanones was established using the permeation of human skin in the Franz cell system. During the method previously described, there was no interference observed from human skin components in ex vivo permeation studies.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 299 ◽  
Author(s):  
Raanan Gvirtz ◽  
Navit Ogen-Shtern ◽  
Guy Cohen

Several in vitro models that mimic different aspects of local skin inflammation exist. The use of ex vivo human skin organ culture (HSOC) has been reported previously. However, comprehensive evaluation of the cytokine secretory capacity of the system and its kinetics has not been performed. Objective: the aim of the current study was to investigate the levels and secretion pattern of key cytokine from human skin tissue upon lipopolysaccharide (LPS) stimulation. HSOC maintained in an air–liquid interface was used. Epidermal and tissue viability was monitored by MTT and Lactate Dehydrogenase (LDH) activity assay, respectively. Cytokine levels were examined by ELISA and multiplex array. HSOCs were treated without or with three different LPS subtypes and the impact on IL-6 and IL-8 secretion was evaluated. The compounds enhanced the secreted levels of both cytokines. However, differences were observed in their efficacy and potency. Next, a kinetic multiplex analysis was performed on LPS-stimulated explants taken from three different donors to evaluate the cytokine secretion pattern during 0–72 h post-induction. The results revealed that the pro-inflammatory cytokines IL-6, IL-8, TNFα and IL-1β were up-regulated by LPS stimuli. IL-10, an anti-inflammatory cytokine, was also induced by LPS, but exhibited a different secretion pattern, peak time and maximal stimulation values. IL-1α and IL-15 showed donor-specific changes. Lastly, dexamethasone attenuated cytokine secretion in five independent repetitions, supporting the ability of the system to be used for drug screening. The collective results demonstrate that several cytokines can be used as valid inflammatory markers, regardless of changes in the secretion levels due to donor’s specific alterations.


Sign in / Sign up

Export Citation Format

Share Document