Studies with Emulsion Containing trans-resveratrol: in vitro Release Profile and ex vivo Human Skin Permeation

2015 ◽  
Vol 12 (2) ◽  
pp. 157-165 ◽  
Author(s):  
Priscila de Almeida ◽  
Michele Alves ◽  
Hudson Polonini ◽  
Stephane Calixto ◽  
Tiago Braga Gomes ◽  
...  
2015 ◽  
Vol 65 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Ada Stelmakienė ◽  
Kristina Ramanauskienė ◽  
Vitalis Briedis

Abstract The aim of this study was to evaluate the release of rosmarinic acid (RA) from the experimental topical formulations with the Melissa officinalis L. extract and to evaluate its penetration through undamaged human skin ex vivo. The results of the in vitro release study showed that higher amounts of RA were released from the emulsion vehicle when lemon balm extract was added in its dry form. An inverse correlation was detected between the released amount of RA and the consistency index of the formulation. Different penetration of RA into the skin may be influenced by the characteristics of the vehicle as well as by the form of the extract. The results of penetration assessment showed that the intensity of RA penetration was influenced by its lipophilic properties: RA was accumulating in the epidermis, while the dermis served as a barrier, impeding its deeper penetration.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 64 ◽  
Author(s):  
Lupe Carolina Espinoza ◽  
Marcelle Silva-Abreu ◽  
Beatriz Clares ◽  
María José Rodríguez-Lagunas ◽  
Lyda Halbaut ◽  
...  

Donepezil (DPZ) is widely used in the treatment of Alzheimer’s disease in tablet form for oral administration. The pharmacological efficacy of this drug can be enhanced by the use of intranasal administration because this route makes bypassing the blood–brain barrier (BBB) possible. The aim of this study was to develop a nanoemulsion (NE) as well as a nanoemulsion with a combination of bioadhesion and penetration enhancing properties (PNE) in order to facilitate the transport of DPZ from nose-to-brain. Composition of NE was established using three pseudo-ternary diagrams and PNE was developed by incorporating Pluronic F-127 to the aqueous phase. Parameters such as physical properties, stability, in vitro release profile, and ex vivo permeation were determined for both formulations. The tolerability was evaluated by in vitro and in vivo models. DPZ-NE and DPZ-PNE were transparent, monophasic, homogeneous, and physically stable with droplets of nanometric size and spherical shape. DPZ-NE showed Newtonian behavior whereas a shear thinning (pseudoplastic) behavior was observed for DPZ-PNE. The release profile of both formulations followed a hyperbolic kinetic. The permeation and prediction parameters were significantly higher for DPZ-PNE, suggesting the use of polymers to be an effective strategy to improve the bioadhesion and penetration of the drug through nasal mucosa, which consequently increase its bioavailability.


2017 ◽  
Vol 9 (6) ◽  
pp. 21 ◽  
Author(s):  
Rajalakshmi S. V. ◽  
Vinaya O. G.

Objective: Aim of the study was to formulate, evaluate and optimize medicated Lip rouge containing acyclovir encapsulated inside a novel vesicular carrier, niosome so that the formulation can improve its membrane penetration. Formulating as a cosmetic Lip rouge formulation will also improve patient compliance in the treatment of herpes labialis.Methods: Acyclovir niosomes were prepared by thin film hydration method. Niosomes were evaluated and were optimized by considering the entrapment efficiency and in vitro release profile. The optimized niosomes were incorporated into lipstick, lip balm and lip rouge for selecting the best lip formulation. Based on the in vitro release profile, ease of application and properties of prepared formulations lip rouge was selected and further evaluations were carried out.Results: Among the six formulations of niosomes NF2 has showed 88.49 % entrapment efficiency and 86.97% cumulative drug release in 8 h. The formulation was optimized considering both entrapment efficiency and in vitro release. The optimized formulation of niosomes was incorporated into Lipstick, lip balm and lip rouge. The evaluation results of lipstick, lip balm and lip rouge for in vitro release suggested lip rouge as the best formulation. The percentage cumulative release of drug from optimized lip rouge at the end of 8 h was 84.77%. The percentage cumulative drug release in ex vivo studies for 8 h was 60.88 %.Conclusion: The results suggested that prepared lip rouge containing acyclovir niosomes can effectively deliver the drug than the marketed acyclovir cream and successful therapy of Recurrent Herpes labialis can be achieved.


Author(s):  
Sylvester O. Eraga ◽  
Matthew I. Arhewoh ◽  
Magnus A. Iwuagwu

Background: The transdermal delivery of insulin involving the use of polymers has been extensively reported. More recently, the use of mucoadhesive or bioadhesive polymers as an insulin base in its formulation is gaining attention possibly due to the penetration enhancing properties of the polymers. Objectives: This study aimed at determining the effect of acid-modified porcine mucin powder on the release and permeation of insulin in transdermal films. Methods: Various batches of insulin films were prepared by solvent casting method using polysorbate 80 as an emulsifying agent and acid-treated and untreated mucin powders as a base. The films were evaluated for their physical properties, folding endurance, moisture content and uptake, drug content, bioadhesion, in vitro release, ex vivo permeation, and in vivo glucose-lowering activity. Results: The prepared insulin films had a weight range of 0.21-0.27 g, folding endurance of 101-103, moisture content and uptake of 13.73%-18.57% and 11.70%-22.30%, respectively, and drug content of 96%-101%. The bioadhesion of the films prepared with acid-treated mucin was within the range of 0.088-0.186 Nm-1 as against 0.055 Nm-1 of the films prepared with untreated mucin. The in vitro release profiles showed a release of 95% insulin from films prepared with untreated mucin within 2 h while the films made with acid-treated mucin gave a release of about 60%-73% over the same period, indicating a slower release. Animals that received acid-treated mucin-base insulin films showed delayed but sustained blood-glucose-lowering up to 70% and for films prepared with untreated mucin 55% within 12 h.  Conclusion: Insulin transdermal films prepared with acid-modified mucin powder gave superior bioadhesive strength values. They also showed improved drug permeation enhancing ability and achieving up to 70% blood glucose lowering in diabetic rats.


2019 ◽  
Vol 9 (1) ◽  
pp. 76-85 ◽  
Author(s):  
R. Nithya ◽  
K. Siram ◽  
R. Hariprasad ◽  
H. Rahman

Background: Paclitaxel (PTX) is a potent anticancer drug which is highly effective against several cancers. Solid lipid nanoparticles (SLNs) loaded with anticancer drugs can enhance its toxicity against tumor cells at low concentrations. Objective: To develop and characterize SLNs of PTX (PSLN) to enhance its toxicity against cancerous cells. Method: The solubility of PTX was screened in various lipids. Solid lipid nanoparticles of PTX (PSLN) were developed by hot homogenization method using Cutina HR and Gelucire 44/14 as lipid carriers and Solutol HS 15 as a surfactant. PSLNs were characterized for size, morphology, zeta potential, entrapment efficiency, physical state of the drug and in vitro release profile in 7.4 pH phosphate buffer saline (PBS). The ability of PTX to enhance toxicity towards cancerous cells was tested by performing cytoxicity assay in MCF7 cell line. Results: Solubility studies of PTX in lipids indicated better solubility when Cutina HR and Gelucire 44/14 were used. PSLNs were found to possess a neutral zeta potential with a size range of 155.4 ± 10.7 nm to 641.9 ± 4.2 nm. In vitro release studies showed a sustained release profile for PSLN over a period of 48 hours. SLNs loaded with PTX were found to be more toxic in killing MCF7 cells at a lower concentration than the free PTX.


2017 ◽  
Vol 9 (3-4) ◽  
Author(s):  
Asmaa S. El-Houssiny ◽  
Azza A. Ward ◽  
Dina M. Mostafa ◽  
Salwa L. Abd-El-Messieh ◽  
Kamal N. Abdel-Nour ◽  
...  

AbstractGlucosamine sulfate (GS) has been used orally for the treatment of osteoarthritis (OA). However, it may be susceptible to the liver first pass phenomenon, which greatly affects its bioavailability, in addition to its side effects on the gastrointestinal tract. Alginate nanoparticles (Alg NPs) were investigated as a new drug carrier for transdermal delivery of GS to improve its effectiveness and reduce side effects. GS-Alg NPs were characterized by encapsulation efficiency, NP yield, particle size and surface charge properties. The in vitro release studies of GS and the ex vivo permeability through rat skin were determined using a UV-Vis spectrophotometer. GS-Alg NPs are within the nanometer range of size. High negative surface charge values are obtained and indicate the high suspension stability of the prepared formulation. The in vitro release studies showed that GS is released from Alg NPs in a sustained and prolonged manner. The ex vivo permeability of GS through rat skin is enhanced significantly after encapsulation in the negatively charged Alg NPs. We successfully reported a highly stable nanoparticlulate system using Alg NPs that permits the encapsulation of GS for topical administration, overcoming the disadvantages of oral administration.


2021 ◽  
Vol 15 (1) ◽  
pp. 22
Author(s):  
María Rincón ◽  
Marcelle Silva-Abreu ◽  
Lupe Carolina Espinoza ◽  
Lilian Sosa ◽  
Ana Cristina Calpena ◽  
...  

A biocompatible topical thermo-reversible hydrogel containing Pranoprofen (PF)-loaded nanostructured lipid carriers (NLCs) was studied as an innovative strategy for the topical treatment of skin inflammatory diseases. The PF-NLCs-F127 hydrogel was characterized physiochemically and short-time stability tests were carried out over 60 days. In vitro release and ex vivo human skin permeation studies were carried out in Franz diffusion cells. In addition, a cytotoxicity assay was studied using the HaCat cell line and in vivo tolerance study was performed in humans by evaluating the biomechanical properties. The anti-inflammatory effect of the PF-NLCs-F127 was evaluated in adult male Sprague Daw-ley® rats using a model of inflammation induced by the topical application of xylol for 1 h. The developed PF-NLCs-F127 exhibited a heterogeneous structure with spherical PF-NLCs in the hydrogel. Furthermore, a thermo-reversible behaviour was determined with a gelling temperature of 32.5 °C, being close to human cutaneous temperature and thus favouring the retention of PF. Furthermore, in the ex vivo study, the amount of PF retained and detected in human skin was high and no systemic effects were observed. The hydrogel was found to be non-cytotoxic, showing cell viability of around 95%. The PF-NLCs-F127 is shown to be well tolerated and no signs of irritancy or alterations of the skin’s biophysical properties were detected. The topical application of PF-NLCs-F127 hydrogel was shown to be efficient in an inflammatory animal model, preventing the loss of stratum corneum and reducing the presence of leukocyte infiltration. The results from this study confirm that the developed hydrogel is a suitable drug delivery carrier for the transdermal delivery of PF, improving its dermal retention, opening the possibility of using it as a promising candidate and safer alternative to topical treatment for local skin inflammation and indicating that it could be useful in the clinical environment.


2021 ◽  
Vol 14 ◽  
Author(s):  
Sarbjot Kaur ◽  
Ujjwal Nautiyal ◽  
Pooja A. Chawla ◽  
Viney Chawla

Background: Background: Olanzapine belongs to a new class of dual spectrum antipsychotic agents. It is known to show promise in managing both the positive and negative symptoms of schizophrenia. Drug delivery systems based on nanostructured lipid carriers (NLC) are expected to provide rapid nose-to-brain transport of this drug and improved distribution into and within the brain. Objective: The present study deals with the preparation and evaluation of olanzapine loaded NLC via the intranasal route for schizophrenia. Methods: Olanzapine-NLC were formulated through the solvent injection method using isopropyl alcohol as the solvent, stearic acid as solid lipid, and oleic acid as liquid lipid, chitosan as a coating agent, and Poloxamer 407 as a surfactant. NLC were characterized for particle size, polydispersity index, entrapment efficiency, pH, viscosity, X-ray diffraction studies, in-vitro mucoadhesion study, in- vitro release and ex-vivo permeation studies. The shape and surface morphology of the prepared NLC was determined through transmission electron microscopy. To detect the interaction of the drug with carriers, compatibility studies were also carried out. Results: Average size and polydispersity index of developed formulation S6 was 227.0±6.3 nm and 0.460 respectively. The encapsulation efficiency of formulation S6 was found to be 87.25 %. The pH, viscosity, in-vitro mucoadhesion study, and in- vitro release of optimized olanzapine loaded NLC were recorded as 5.7 ± 0.05, 78 centipoise, 15±2 min, and 91.96 % respectively. In ex-vivo permeation studies, the percent drug permeated after 210 min was found to be 84.03%. Conclusion: These results reveal potential application of novel olanzapine-NLC in intranasal drug delivery system for treatment of schizophrenia.


2020 ◽  
Vol 306 ◽  
pp. 112861 ◽  
Author(s):  
Juliana Ferreira de Souza ◽  
Katiusca da Silva Pontes ◽  
Thais Francine Ribeiro Alves ◽  
Cecilia Torqueti de Barros ◽  
Venancio Alves Amaral ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document