scholarly journals Propagation of Cylindrical Vector Laser Beams in Turbid Tissue-Like Scattering Media

Photonics ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 56 ◽  
Author(s):  
Alexander Doronin ◽  
Nicolás Vera ◽  
Juan Staforelli ◽  
Pablo Coelho ◽  
Igor Meglinski

We explore the propagation of the cylindrical vector beams (CVB) in turbid tissue-like scattering medium in comparison with the conventional Gaussian laser beam. The study of propagation of CVB and Gaussian laser beams in the medium is performed utilizing the unified electric field Monte Carlo model. The implemented Monte Carlo model is a part of a generalized on-line computational tool and utilizes parallel computing, executed on the NVIDIA Graphics Processing Units (GPUs) supporting Compute Unified Device Architecture (CUDA). Using extensive computational studies, we demonstrate that after propagation through the turbid tissue-like scattering medium, the degree of fringe contrast for CVB becomes at least twice higher in comparison to the conventional linearly polarized Gaussian beam. The results of simulations agree with the results of experimental studies. Both experimental and theoretical results suggest that there is a high potential of the application of CVB in the diagnosis of biological tissues.

2010 ◽  
Vol 03 (03) ◽  
pp. 203-211 ◽  
Author(s):  
WILLIAM C. VOGT ◽  
HAIOU SHEN ◽  
GE WANG ◽  
CHRISTOPHER G. RYLANDER

Tissue Optical Clearing Devices (TOCDs) have been shown to increase light transmission through mechanically compressed regions of naturally turbid biological tissues. We hypothesize that zones of high compressive strain induced by TOCD pins produce localized water displacement and reversible changes in tissue optical properties. In this paper, we demonstrate a novel combined mechanical finite element model and optical Monte Carlo model which simulates TOCD pin compression of an ex vivo porcine skin sample and modified spatial photon fluence distributions within the tissue. Results of this simulation qualitatively suggest that light transmission through the skin can be significantly affected by changes in compressed tissue geometry as well as concurrent changes in tissue optical properties. The development of a comprehensive multi-domain model of TOCD application to tissues such as skin could ultimately be used as a framework for optimizing future design of TOCDs.


Author(s):  
Leonid Dombrovsky ◽  
Wojciech Lipin´ski

A combined two-step computational method incorporating (1) transport approximation of the scattering phase function, (2) P1 approximation and the finite element method for computing the radiation source function at the first step, and (3) the Monte Carlo method for computing radiative intensity at the second step, is developed. The accuracy of the combined method is examined for model problems involving two multi-dimensional configurations of an anisotropically scattering medium. A detailed analysis is performed for a medium with scattering phase function described by a family of the Henyey–Greenstein functions. The accuracy of the two-step method is assessed by comparing the distribution of the radiative flux leaving the medium to that obtained by a reference complete Monte Carlo method. This study confirms the main results of previous papers on the errors of the two-step solution method. The combined method leads to a significant reduction in computational time as compared to the reference method, by at least 1 order of magnitude. Finally, possible applications of the combined method are briefly discussed.


2020 ◽  
Vol 34 (36) ◽  
pp. 2050414
Author(s):  
Di Gao ◽  
Yanhui Li

Research on target recognition in random media by Monte Carlo method has made rapid progress. However, the commonly used probability sampling function of the emitted photons’ directions is not suitable for simulating the radial cross-sectional distribution of a beam. This sampling has little effect on the simulated laser transmission in clouds, but if the laser range profile (LRP) of a target is simulated, it will cause serious distortion because the common sampling method cannot well represent the radial two-dimensional intensity distribution of the beam. In this paper, the traditional sampling method is improved through rigorous derivation, and the superiority of the method is illustrated by simulation data. The simulation results show that the Monte Carlo model of LRP based on the improved sampling method plays well in profile shape of ideal targets identification. This research can bring more reference and significance to target recognition application.


1997 ◽  
Vol 119 (4) ◽  
pp. 489-495 ◽  
Author(s):  
A. J. Welch ◽  
C. M. Gardner

A Monte Carlo model is described for modeling photo propagation in a scattering medium. The fraction of locally absorbed photons is proportional to the local rate of heat generation in laser-irradiated tissue and the associated distribution of light (fluence rate) is obtained by dividing the rate of heat generation by the local absorption coefficient. Examples of computed distributions of the rate of heat generation are presented for situations where light scattering in tissue is important. The method is applied to analyze treatment of Port Wine Stain and the selection of laser wave-lengths for cyclophotocoagulation.


2018 ◽  
Author(s):  
Michael Fischer

<div>Aluminophosphates with zeolite-like topologies (AlPOs) have received considerable attention as potential adsorbents for use in the separation of methane-containing gas mixtures. Such separations, especially the removal of carbon dioxide and nitrogen from methane, are of great technological relevance in the context of the “upgrade” of natural gas, landfill gas, and biogas. While more than 50 zeolite frameworks have been synthesised in aluminophosphate composition or as heteroatom substituted AlPO derivatives, only a few of them have been characterised experimentally with regard to their adsorption and separation behaviour. In order to predict the potential of a variety of AlPO frameworks for applications in CO<sub>2</sub>/CH<sub>4</sub> and CH<sub>4</sub>/N<sub>2</sub> separations, atomistic grand-canonical Monte Carlo (GCMC) simulations were performed for 53 different structures. Building on previous work, which studied CO<sub>2</sub>/N<sub>2</sub> mixture adsorption in AlPOs (M. Fischer, <i>Phys. Chem. Chem. Phys.</i>, 2017, <b>19</b>, 22801–22812), force field parameters for methane adsorption in AlPOs were validated through a comparison to available experimental adsorption data. Afterwards, CO<sub>2</sub>/CH<sub>4</sub> and CH<sub>4</sub>/N<sub>2</sub> mixture isotherms were computed for all 53 frameworks for room temperature and total pressures up to 1000 kPa (10 bar), allowing the prediction of selectivities and working capacities for conditions that are relevant for pressure swing adsorption (PSA) and vacuum swing adsorption (VSA). For CO<sub>2</sub>/CH<sub>4 </sub>mixtures, the <b>GIS</b>, <b>SIV</b>, and <b>ATT</b> frameworks were found to have the highest selectivities and CO<sub>2 </sub>working capacities under VSA conditions, whereas several frameworks, among them <b>AFY</b>, <b>KFI</b>, <b>AEI</b>, and <b>LTA</b>, show higher working capacities under PSA conditions. For CH<sub>4</sub>/N<sub>2</sub> mixtures, all frameworks are moderately selective for methane over nitrogen, with <b>ATV</b> exhibiting a significantly higher selectivity than all other frameworks. While some of the most promising topologies are either not available in pure-AlPO<sub>4</sub> composition or collapse upon calcination, others can be synthesised and activated, rendering them interesting candidates for future experimental studies. In addition to predictions of mixture adsorption isotherms, further simulations were performed for four selected systems in order to investigate the microscopic origins of the macroscopic adsorption behaviour, <i>e.g. </i>with regard to the very high CH<sub>4</sub>/N<sub>2</sub> selectivity of <b>ATV</b> and the loading-dependent evolution of the heat of CO<sub>2</sub> adsorption and CO<sub>2</sub>/CH<sub>4</sub> selectivity of <b>AEI</b> and GME.</div>


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 90
Author(s):  
Shuo Zhu ◽  
Enlai Guo ◽  
Qianying Cui ◽  
Lianfa Bai ◽  
Jing Han ◽  
...  

Scattering medium brings great difficulties to locate and reconstruct objects especially when the objects are distributed in different positions. In this paper, a novel physics and learning-heuristic method is presented to locate and image the object through a strong scattering medium. A novel physics-informed framework, named DINet, is constructed to predict the depth and the image of the hidden object from the captured speckle pattern. With the phase-space constraint and the efficient network structure, the proposed method enables to locate the object with a depth mean error less than 0.05 mm, and image the object with an average peak signal-to-noise ratio (PSNR) above 24 dB, ranging from 350 mm to 1150 mm. The constructed DINet firstly solves the problem of quantitative locating and imaging via a single speckle pattern in a large depth. Comparing with the traditional methods, it paves the way to the practical applications requiring multi-physics through scattering media.


Sign in / Sign up

Export Citation Format

Share Document