scholarly journals Multichannel Fiber-Optic Silicon Fabry–Pérot Interferometric Bolometer System for Plasma Radiation Measurements

Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 344
Author(s):  
Nezam Uddin ◽  
Qiwen Sheng ◽  
Seungsup Lee ◽  
Matthew L. Reinke ◽  
David Donovan ◽  
...  

A single-channel fiber-optic bolometer system based on a high-finesse silicon Fabry–Pérot interferometer (FPI) was previously reported, intended to measure plasma radiation from the magnetically confined fusion chamber. Recently, we developed a multichannel fiber-optic bolometer system with five bolometers multiplexed using a coarse wavelength division multiplexer (CWDM) and interrogated with a white-light system involving a superluminescent light-emission diode source and a high-speed spectrometer. One of the bolometers was used as the reference bolometer to compensate for the ambient temperature variations, and the other four bolometers were used for radiation measurement. The bolometers have a simple structure with a silicon pillar at the end of the single-mode fiber and a gold disk on the other side of the silicon pillar. They are also easy to fabricate without stringent requirements on the optical alignment. Analysis of the system optimization was performed to improve the noise performance and to mitigate the vibration effect that may present in the practical application. The system had a significantly enhanced measurement range compared to the previous high-finesse FPI bolometer system for measuring radiation. Test results performed in air using a 405 nm laser as the radiation source showed that the temperature resolution and the noise-equivalent power density of the sensing bolometers connected to each channel of the CWDM were, respectively, ~0.4 mK and ~0.1 W/m2, with a time constant of ~220 ms, which is comparable to the previous more complicated fiber-optic bolometer systems based on high-finesse FPIs that were interrogated using wavelength-scanning lasers.

Author(s):  
Usman Illahi ◽  
Javed Iqbal ◽  
Muhammad Ismail Sulaiman ◽  
Muhammad Alam ◽  
Mazliham Mohd Su'ud

<p>A novel technique of multiplexing called Tributary Mapping Multiplexing (TMM) is<br />applied to a single channel wavelength division multiplexing system and performance is monitored on the basis of simulation results. To elaborate the performance of TMM in this paper, a 4-User TMM system over single wavelength channel is demonstrated. TMM showed significant tolerance against narrow optical filtering as compared to that of conventional TDM at the rate of 40 Gbit/s. The above calculations are made by optical filter bandwidth and dispersion tolerance that was allowed at minimum. The spectral efficiency achieved by this TMM was 1 b/s/Hz and it was executed by using transmitters and receivers of 10 Gbit/s without polarized multiplexing. The high spectral efficiency, high dispersion tolerance and tolerance against strong optical filtering makes TMM an efficient technique for High<br />Speed Fiber Optic Communication.</p>


2012 ◽  
Vol 51 (8) ◽  
pp. 1033 ◽  
Author(s):  
De-Wen Duan ◽  
Yun-jiang Rao ◽  
Yu-Song Hou ◽  
Tao Zhu

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 306 ◽  
Author(s):  
Paulina Listewnik ◽  
Marzena Hirsch ◽  
Przemysław Struk ◽  
Matthieu Weber ◽  
Mikhael Bechelany ◽  
...  

We report the fabrication of a novel fiber-optic sensor device, based on the use of a microsphere conformally coated with a thin layer of zinc oxide (ZnO) by atomic layer deposition (ALD), and its use as a refractive index sensor. The microsphere was prepared on the tip of a single-mode optical fiber, on which a conformal ZnO thin film of 200 nm was deposited using an ALD process based on diethyl zinc (DEZ) and water at 100 °C. The modified fiber-optic microsphere was examined using scanning electron microscopy and Raman spectroscopy. Theoretical modeling has been carried out to assess the structure performance, and the performed experimental measurements carried out confirmed the enhanced sensing abilities when the microsphere was coated with a ZnO layer. The fabricated refractive index sensor was operating in a reflective mode of a Fabry–Pérot configuration, using a low coherent measurement system. The application of the ALD ZnO coating enabled for a better measurement of the refractive index of samples in the range of the refractive index allowed by the optical fiber. The proof-of-concept results presented in this work open prospects for the sensing community and will promote the use of fiber-optic sensing technologies.


2013 ◽  
Vol 470 ◽  
pp. 630-635 ◽  
Author(s):  
Ning Fang Song ◽  
Rui Qi Cui ◽  
Yu Jie Yang ◽  
Xiao Liang Xu

In this paper, a novel method used for Fabry-Perot cavity length's demodulation in high-speed and large scope measurement was proposed. Principle of the method is based on uniqueness of intensity of multiple wavelengths in the scope of Fabry-Perot vibration. This technique offers flexibility of selecting incident wave length and enhances the scope of demodulation of cavity length, compared with that popular triple wave length demodulation. In experiment, multi-wavelength demodulation is demonstrated for measurement of cavity length varying from 110um to 115um and the strain resolution was higher than 0.1um.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6609
Author(s):  
Peng Zhang ◽  
Ying Wang ◽  
Yuru Chen ◽  
Xiaohua Lei ◽  
Yi Qi ◽  
...  

A fast real-time demodulation method based on the coarsely sampled spectrum is proposed for transient signals of fiber optic extrinsic Fabry-Perot interferometers (EFPI) sensors. The feasibility of phase demodulation using a coarse spectrum is theoretically analyzed. Based on the coarse spectrum, fast Fourier transform (FFT) algorithm is used to roughly estimate the cavity length. According to the rough estimation, the maximum likelihood estimation (MLE) algorithm is applied to calculate the cavity length accurately. The dense wavelength division multiplexer (DWDM) is used to split the broadband spectrum into the coarse spectrum, and the high-speed synchronous ADC collects the spectrum. The experimental results show that the system can achieve a real-time dynamic demodulation speed of 50 kHz, a static measurement root mean square error (RMSE) of 0.184 nm, and a maximum absolute and relative error distribution of 15 nm and 0.005% of the measurement cavity length compared with optical spectrum analyzers (OSA).


Author(s):  
Sunish J. Mathews ◽  
Sandy Mosse ◽  
Wenfeng Xia ◽  
Dzhoshkun I. Shakir ◽  
Yada Kunpalin ◽  
...  
Keyword(s):  

1991 ◽  
Author(s):  
Stephen R. Kidd ◽  
Pranay G. Sinha ◽  
James S. Barton ◽  
Julian D. C. Jones

2019 ◽  
Vol 58 (02) ◽  
pp. 1
Author(s):  
Ke Chen ◽  
Zelin Wang ◽  
Min Guo ◽  
Bowen Liu ◽  
Qingxu Yu

Sign in / Sign up

Export Citation Format

Share Document