scholarly journals Statistics of the Optical Phase of a Gain-Switched Semiconductor Laser for Fast Quantum Randomness Generation

Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 388
Author(s):  
Angel Valle

The statistics of the optical phase of the light emitted by a semiconductor laser diode when subject to periodic modulation of the applied bias current are theoretically analyzed. Numerical simulations of the stochastic rate equations describing the previous system are performed to describe the temporal dependence of the phase statistics. These simulations are performed by considering two cases corresponding to random and deterministic initial conditions. In contrast to the Gaussian character of the phase that has been assumed in previous works, we show that the phase is not distributed as a Gaussian during the initial stages of evolution. We characterize the time it takes the phase to become Gaussian by calculating the dynamical evolution of the kurtosis coefficient of the phase. We show that, under the typical gain-switching with square-wave modulation used for quantum random number generation, quantity is in the ns time scale; that corresponds to the time it takes the system to lose the memory of the distribution of the initial conditions. We compare the standard deviation of the phase obtained with random and deterministic initial conditions to show that their differences become more important as the modulation speed is increased.

1972 ◽  
Vol 50 (20) ◽  
pp. 2523-2535 ◽  
Author(s):  
J. Gilbert ◽  
J. L. Lachambre ◽  
F. Rheault ◽  
R. Fortin

The dynamical processes responsible for laser emission in the pulsed pumping of a transversely excited atmospheric (TEA) CO2 laser are investigated. An explanation for the formation of the giant pulse is proposed on the basis of a gain-switching mechanism in which it is assumed that with short strong-current pulses a high population inversion can be achieved prior to the onset of laser action. The kinetics of the mechanism are described by means of a set of nonlinear rate equations idealized to a four-energy-state system. With suitable initial conditions on the populations, the transient solution of these equations for the mixtures CO2–He and CO–N2–He appears to be consistent with the major features of experimental observation.


2022 ◽  
Vol 43 (01) ◽  
pp. 110-118
Author(s):  
Cui-cui LIU ◽  
◽  
Nan LIN ◽  
Xiao-yu MA ◽  
Hong-qi JING ◽  
...  

2018 ◽  
Vol 618 ◽  
pp. A116 ◽  
Author(s):  
J. Prieto-Arranz ◽  
E. Palle ◽  
D. Gandolfi ◽  
O. Barragán ◽  
E. W. Guenther ◽  
...  

Context. Multiplanet systems are excellent laboratories to test planet formation models as all planets are formed under the same initial conditions. In this context, systems transiting bright stars can play a key role, since planetary masses, radii, and bulk densities can be measured. Aims. GJ 9827 (K2-135) has recently been found to host a tightly packed system consisting of three transiting small planets whose orbital periods of 1.2, 3.6, and 6.2 days are near the 1:3:5 ratio. GJ 9827 hosts the nearest planetary system (~30 pc) detected by NASA’s Kepler or K2 space mission. Its brightness (V = 10.35 mag) makes the star an ideal target for detailed studies of the properties of its planets. Methods. Combining the K2 photometry with high-precision radial-velocity measurements gathered with the FIES, HARPS, and HARPS-N spectrographs we revised the system parameters and derive the masses of the three planets. Results. We find that GJ 9827 b has a mass of Mb = 3.69−0.46+0.48 M⊕ and a radius of Rb = 1.58−0.13+0.14 R⊕, yielding a mean density of ρb = 5.11−1.27+1.74 g cm−3. GJ 9827 c has a mass of Mc = 1.45−0.57+0.58 M⊕, radius of Rc = 1.24−0.11+0.11 R⊕, and a mean density of ρc = 4.13−1.77+2.31 g cm−3. For GJ 9827 d, we derive Md = 1.45−0.57+0.58 M⊕, Rd = 1.24−0.11+0.11 R⊕, and ρd = 1.51−0.53+0.71 g cm−3. Conclusions. GJ 9827 is one of the few known transiting planetary systems for which the masses of all planets have been determined with a precision better than 30%. This system is particularly interesting because all three planets are close to the limit between super-Earths and sub-Neptunes. The planetary bulk compositions are compatible with a scenario where all three planets formed with similar core and atmosphere compositions, and we speculate that while GJ 9827 b and GJ 9827 c lost their atmospheric envelopes, GJ 9827 d maintained its primordial atmosphere, owing to the much lower stellarirradiation. This makes GJ 9827 one of the very few systems where the dynamical evolution and the atmosphericescape can be studied in detail for all planets, helping us to understand how compact systems form and evolve.


Sign in / Sign up

Export Citation Format

Share Document