scholarly journals Assessment of Genetic Diversity and Symbiotic Efficiency of Selected Rhizobia Strains Nodulating Lentil (Lens culinaris Medik.)

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Badreddine Sijilmassi ◽  
Abdelkarim Filali-Maltouf ◽  
Hassan Boulahyaoui ◽  
Aymane Kricha ◽  
Kenza Boubekri ◽  
...  

A total of 14 Rhizobium strains were isolated from lentil accessions grown at the ICARDA experimental research station at Marchouch in Morocco and used for molecular characterization and symbiotic efficiency assessment. Individual phylogenetic analysis using the 16S rRNA gene, house-keeping genes rpoB, recA, and gyrB, and symbiotic genes nodD and nodA along with Multilocus Sequence Analysis (MLSA) of the concatenated genes (16S rRNA-rpoB-recA-gyrB) was carried out for the identification and clustering of the isolates. The symbiotic efficiency of the strains was assessed on three Moroccan lentil cultivars (Bakria, Chakkouf, and Zaria) based on the number of nodules, plant height, plant dry weight, and total nitrogen content in leaves. The results showed that the individual phylogenetic analysis clustered all the strains into Rhizobium laguerreae and Rhizobium leguminosarum with sequence similarity ranging from 94 to 100%, except one strain which clustered with Mesorhizobium huakuii with sequence similarity of 100%. The MLSA of the concatenated genes and the related percentages of similarity clustered these strains into two groups of Rhizobium species, with one strain as a new genospecies when applying the threshold of 96%. For symbiotic efficiency, the Bakria variety showed the best association with 10 strains compared to its non-inoculated control (p-value ≤ 0.05), followed by Chakkouf and Zaria. The present study concluded that the genetic diversity and the symbiotic efficiency of Rhizobium strains appeared to be mainly under the control of the lentil genotypes.

2011 ◽  
Vol 61 (12) ◽  
pp. 2974-2978 ◽  
Author(s):  
Jinxing Zhu ◽  
Xiaoli Liu ◽  
Xiuzhu Dong

Two mesophilic methanogenic strains, designated TS-2T and GHT, were isolated from sediments of Tuosu lake and Gahai lake, respectively, in the Qaidam basin, Qinghai province, China. Cells of both isolates were rods (about 0.3–0.5×2–5 µm) with blunt rounded ends and Gram-staining-positive. Strain TS-2T was motile with one or two polar flagella and used only H2/CO2 for growth and methanogenesis. Strain GHT was non-motile, used both H2/CO2 and formate and displayed a variable cell arrangement depending on the substrate: long chains when growing in formate (50 mM) or under high pressure H2 and single cells under low pressure H2. Phylogenetic analysis based on 16S rRNA gene sequences placed the two isolates in the genus Methanobacterium. Strain TS-2T was most closely related to Methanobacterium alcaliphilum NBRC 105226T (96 % 16S rRNA gene sequence similarity). Phylogenetic analysis based on the alpha subunit of methyl-coenzyme M reductase also supported the affiliation of the two isolates with the genus Methanobacterium. DNA–DNA relatedness between the isolates and M. alcaliphilum DSM 3387T was 39–53 %. Hence we propose two novel species, Methanobacterium movens sp. nov. (type strain TS-2T = AS 1.5093T = JCM 15415T) and Methanobacterium flexile sp. nov. (type strain GHT = AS 1.5092T = JCM 15416T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 638-641 ◽  
Author(s):  
Liguang Zhou ◽  
Xiaoli Liu ◽  
Xiuzhu Dong

A psychrotolerant methanogenic strain, X-18T, was isolated from the soil of the Madoi wetland at Qinghai, Tibetan plateau, China. Cells were wavy rods (11–62 µm long) with blunt tapered ends and Gram-stain-negative. Strain X-18T grew strictly anaerobically and produced methane exclusively from H2/CO2. Growth occurred in the temperature range of 4–32 °C and optimally at 25 °C. Growth pH ranged from 6.5 to 8.0 and the optimum was 7.0. The G+C content of the genomic DNA of strain X-18T was 44.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and the alpha subunit of methyl-coenzyme M reductase indicated that strain X-18T was affiliated to the genus Methanospirillum and was most closely related to Methanospirillum lacunae Ki8-1T, with 96.3 % 16S rRNA gene sequence similarity. However, strain X-18T could be distinguished from the existing species of the genus Methanospirillum by its lower growth temperature and obligate hydrogenotrophic methanogenesis. On the basis of phenotypic characteristics and phylogenetic analysis, strain X-18T represents a novel species of the genus Methanospirillum , for which the name Methanospirillum psychrodurum sp. nov. is proposed and strain X-18T is assigned as the type strain ( = CGMCC 1.5186T = JCM 19216T).


2004 ◽  
Vol 54 (4) ◽  
pp. 1177-1184 ◽  
Author(s):  
Irene Wagner-Döbler ◽  
Holger Rheims ◽  
Andreas Felske ◽  
Aymen El-Ghezal ◽  
Dirk Flade-Schröder ◽  
...  

A water sample from the North Sea was used to isolate the abundant heterotrophic bacteria that are able to grow on complex marine media. Isolation was by serial dilution and spread plating. Phylogenetic analysis of nearly complete 16S rRNA gene sequences revealed that one of the strains, HEL-45T, had 97·4 % sequence similarity to Sulfitobacter mediterraneus and 96·5 % sequence similarity to Staleya guttiformis. Strain HEL-45T is a Gram-negative, non-motile rod and obligate aerobe and requires sodium and 1–7 % sea salts for growth. It contains storage granules and does not produce bacteriochlorophyll. Optimal growth temperatures are 25–30 °C. The DNA base composition (G+C content) is 60·1 mol%. Strain HEL-45T has Q10 as the dominant respiratory quinone. The major polar lipids are phosphatidyl glycerol, diphosphatidyl glycerol, phosphatidyl choline, phosphatidyl ethanolamine and an aminolipid. The fatty acids comprise 18 : 1ω7c, 18 : 0, 16 : 1ω7c, 16 : 0, 3-OH 10 : 0, 3-OH 12 : 1 (or 3-oxo 12 : 0) and traces of an 18 : 2 fatty acid. Among the hydroxylated fatty acids only 3-OH 12 : 1 (or 3-oxo 12 : 0) appears to be amide linked, whereas 3-OH 10 : 0 appears to be ester linked. The minor fatty acid components (between 1 and 7 %) allow three subgroups to be distinguished in the Sulfitobacter/Staleya clade, placing HEL-45T into a separate lineage characterized by the presence of 3-OH 12 : 1 (or 3-oxo 12 : 0) and both ester- and amide-linked 16 : 1ω7c phospholipids. HEL-45T produces indole and derivatives thereof, several cyclic dipeptides and thryptanthrin. Phylogenetic analysis of 16S rRNA gene sequences and chemotaxonomic data support the description of a new genus and species, to include Oceanibulbus indolifex gen. nov., sp. nov., with the type strain HEL-45T (=DSM 14862T=NCIMB 13983T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1895-1901 ◽  
Author(s):  
Helena Lucena-Padrós ◽  
Juan M. González ◽  
Belén Caballero-Guerrero ◽  
José Luis Ruiz-Barba ◽  
Antonio Maldonado-Barragán

Three isolates originating from Spanish-style green-olive fermentations in a manufacturing company in the province of Seville, Spain, were taxonomically characterized by a polyphasic approach. This included a phylogenetic analysis based on 16S rRNA gene sequences and multi-locus sequence analysis (MLSA) based on pyrH, recA, rpoA, gyrB and mreB genes. The isolates shared 98.0 % 16S rRNA gene sequence similarity with Vibrio xiamenensis G21T. Phylogenetic analysis based on 16S rRNA gene sequences using the neighbour-joining and maximum-likelihood methods showed that the isolates fell within the genus Vibrio and formed an independent branch close to V. xiamenensis G21T. The maximum-parsimony method grouped the isolates to V. xiamenensis G21T but forming two clearly separated branches. Phylogenetic trees based on individual pyrH, recA, rpoA, gyrB and mreB gene sequences revealed that strain IGJ1.11T formed a clade alone or with V. xiamenensis G21T. Sequence similarities of the pyrH, recA, rpoA, gyrB and mreB genes between strain IGJ1.11T and V. xiamenensis G21T were 86.7, 85.7, 97.3, 87.6 and 84.8 %, respectively. MLSA of concatenated sequences showed that strain IGJ1.11T and V. xiamenensis G21T are two clearly separated species that form a clade, which we named Clade Xiamenensis, that presented 89.7 % concatenated gene sequence similarity, i.e. less than 92 %. The major cellular fatty acids (>5 %) of strain IGJ1.11T were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). Enzymic activity profiles, sugar fermentation patterns and DNA G+C content (52.9 mol%) differentiated the novel strains from the closest related members of the genus Vibrio. The name Vibrio olivae sp. nov. is proposed for the novel species. The type strain is IGJ1.11T ( = CECT 8064T = DSM 25438T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1865-1869 ◽  
Author(s):  
Hongli An ◽  
Mengbo Xu ◽  
Jun Dai ◽  
Yang Wang ◽  
Feng Cai ◽  
...  

A Gram-negative, aerobic, motile, Sphingomonas-like rod, strain 10-1-84T, was isolated from a sand sample collected from the desert of Xinjiang, China. The isolate contained Q-10 as the predominant ubiquinone and C18 : 1ω7c, C16 : 0, C16 : 1ω7c and C14 : 0 2-OH as the major fatty acids. The polyamine pattern contained predominantly sym-homospermidine. The main polar lipids were sphingoglycolipid, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidyldimethylethanolamine and an unknown polar lipid. The DNA G+C content was 63.3 mol%. 16S rRNA gene sequence similarity between strain 10-1-84T and the type strains of species of the genus Sphingomonas ranged from 91.11 to 96.54 %. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain 10-1-84T belonged to the genus Sphingomonas. On the basis of phylogenetic analysis and physiological and biochemical characterization, strain 10-1-84T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas xinjiangensis sp. nov. is proposed. The type strain is 10-1-84T ( = CCTCC AB 208035T  = NRRL B-51332T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1329-1334 ◽  
Author(s):  
Yong-Taek Jung ◽  
Jung-Hoon Yoon

A Gram-negative, non-spore-forming, non-flagellated, motile-by-gliding rod, designated SSK2-3T, was isolated from the junction between seawater and a freshwater spring at Jeju island, South Korea. Strain SSK2-3T grew optimally at 25–30 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SSK2-3T clustered with type strains of species of the genus Mariniflexile , with which it exhibited 97.2–97.8 % 16S rRNA gene sequence similarity. Sequence similarity between the isolate and the other strains used in the phylogenetic analysis was <95.6 %. Strain SSK2-3T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 G and C15 : 0 as the major fatty acids. The major polar lipids of strain SSK2-3T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content of strain SSK2-3T was 32.4 mol%. DNA–DNA relatedness between the isolate and Mariniflexile gromovii KCTC 12570T, Mariniflexile fucanivorans DSM 18792T and Mariniflexile aquimaris HWR-17T was 19, 15 and 20 %, respectively. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain SSK2-3T is separate from other members of the genus Mariniflexile . On the basis of the data presented, strain SSK2-3T is considered to represent a novel species of the genus Mariniflexile , for which the name Mariniflexile jejuense sp. nov. is proposed. The type strain is SSK2-3T ( = KCTC 23958T  = CCUG 62414T). An emended description of the genus Mariniflexile is given.


2011 ◽  
Vol 61 (7) ◽  
pp. 1699-1704 ◽  
Author(s):  
H. Christensen ◽  
A. M. Bojesen ◽  
M. Bisgaard

Strains T138021-75T, Pg19 and Pg20 (taxon 25 of Bisgaard) were isolated from guinea pigs and characterized. Strains T138021-75T and Pg20 showed identical 16S rRNA gene sequences and were distantly related to the published strain P224 with the highest 16S rRNA similarity of 98.6 %. These two strains showed 97.8 % sequence similarity with the type strain and other strains of Mannheimia glucosida and 97.3 % similarity with the type strain of Mannheimia varigena, but <97 % similarity with all other type strains of the genus Mannheimia, including Mannheimia haemolytica (96.9 %). Phylogenetic analysis of rpoB gene sequences showed that strain P224 had a distant position (89.9 % gene sequence similarity) compared with the three other strains (T138021-75T, Pg20 and Pg19), which had identical gene sequences. These three novel strains also shared identical recN gene sequences. Phylogenetic analysis of the recN gene sequences showed a close relationship between the three novel strains and strain P224. The DNA–DNA reassociation value between strain T138021-75T and P224 was 81.6 % and 40.3 % between strain T138021-75T and the type strain of M. glucosida. Based on the DNA–DNA reassociation data, strain T138021-75T belonged to a separate species that was closely related to strain P224. Strain P224 differed from strains T138021-75T, Pg20 and Pg19 in the following phenotypic characteristics: activity of ornithine carboxylase, hydrolysis of glycosides, and acid formation from maltose, dextrin, melibiose and raffinose, as well as reactions for α-galactosidase and β-xylosidase. Whole genome similarity calculations based on recN gene sequences showed that strains T138021-75T and P224 were related at the species level (0.932), whereas 16S rRNA and partial rpoB gene sequence comparisons showed a more divergent position of strain P224 compared with the novel strains, including a different host of isolation. The results showed that the three strains of taxon 25 represent a novel species for which the name Mannheimia caviae sp. nov. is proposed. The type strain, T138021-75T ( = CCUG 59995T = DSM 23207T) was isolated from purulent conjunctivitis in guinea pigs. Previous publications have documented both ubiquinones and demethylmenaquinone to be present in the type strain. The G+C content of the DNA of the type strain has been found to be 41.4 mol% (T m).


2011 ◽  
Vol 61 (2) ◽  
pp. 330-333 ◽  
Author(s):  
Byoung-Jun Yoon ◽  
Duck-Chul Oh

A Gram-negative, yellow-pigmented, rod-shaped, strictly aerobic, non-flagellated, oxidase- and catalase-positive, marine bacterium, designated A2T, was isolated from a marine sponge, Hymeniacidon flavia, collected from the coast of Jeju Island, South Korea. Phylogenetic analysis based on nearly complete 16S rRNA gene sequences revealed that strain A2T was a member of the family Flavobacteriaceae. Its closest relatives were Formosa agariphila KMM 3901T and Formosa algae KMM 3553T (96.99 and 96.98 % 16S rRNA gene sequence similarity, respectively). DNA–DNA relatedness between strain A2T and F. agariphila KMM 3901T and F. algae KMM 3553T was 14.1 and 26.8 %, respectively. The dominant fatty acids (>5 %) of strain A2T were iso-C15 : 0 (33.9 %), iso-C17 : 0 3-OH (20.8 %), iso-C15 : 1 G (10.5 %) and iso-C15 : 0 3-OH (6.1 %). The DNA G+C content of strain A2T was 36.0 mol% and the major respiratory quinone was MK-6. On the basis of phenotypic and phylogenetic analysis, strain A2T represents a novel species of the genus Formosa, for which the name Formosa spongicola sp. nov. is proposed. The type strain is A2T (=KCTC 22662T =DSM 22637T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 710-715 ◽  
Author(s):  
De-Chao Zhang ◽  
Mersiha Redzic ◽  
Hong-Can Liu ◽  
Yu-Guang Zhou ◽  
Franz Schinner ◽  
...  

Two psychrophilic strains, Cr7-05T and Cr4-44T, isolated from alpine glacier cryoconite, were characterized by using a polyphasic approach. Both strains were psychrophilic, showing good growth over a temperature range of 1–20 °C. The chemotaxonomic characteristics of these isolates included the presence of C18 : 1ω7c and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the major cellular fatty acids, Q-10 as the predominant ubiquinone and diphosphatidylglycerol, phosphatidylglycerol and unknown glycolipids as major polar lipids. The DNA G+C contents of strains Cr7-05T and Cr4-44T were 61.4 and 63.6 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates belong to the genus Devosia. The 16S rRNA gene sequence similarity between the two strains was 98.6 %, but DNA–DNA hybridization indicated 54 % relatedness. Strains Cr7-05T and Cr4-44T exhibited 16S rRNA gene sequence similarity of 94.7–97.2 and 94.9–96.9 %, respectively, to the type strains of recognized Devosia species. On the basis of phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data, strains Cr7-05T and Cr4-44T represent two novel species within the genus Devosia, for which the names Devosia psychrophila sp. nov. (type strain Cr7-05T  = DSM 22950T  = CGMCC 1.10210T  = CIP 110130T) and Devosia glacialis sp. nov. (type strain Cr4-44T  = CGMCC 1.10691T  = LMG 26051T) are proposed. An emended description of the genus Devosia is also provided.


2006 ◽  
Vol 56 (8) ◽  
pp. 1841-1845 ◽  
Author(s):  
Inês Nunes ◽  
Igor Tiago ◽  
Ana Luísa Pires ◽  
Milton S. da Costa ◽  
António Veríssimo

A Gram-positive bacterium, designated B22T, was isolated from potting soil produced in Portugal. This organism is a catalase-positive, oxidase-negative, motile, spore-forming, aerobic rod that grows optimally at 37 °C and pH 8.0–8.5. Optimal growth occurs in media containing 1 % (w/v) NaCl, although the organism can grow in 0–8 % NaCl. The cell wall peptidoglycan is of the A4α type with a cross-linkage containing d-Asp. The major respiratory quinone is menaquinone 7 and the major fatty acids are anteiso-15 : 0, anteiso-17 : 0 and iso-15 : 0. The DNA G+C content is 37.9 mol%. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain B22T formed a new branch within the family Bacillaceae. The novel isolate is phylogenetically closely related to members of genera of moderately halophilic bacilli and formed a coherent cluster with species of the genera Salinibacillus, Virgibacillus, Oceanobacillus and Lentibacillus, supported by bootstrap analysis at a confidence level of 71 %. Strain B22T exhibited 16S rRNA gene pairwise sequence similarity values of 94.7–94.3 % with members of the genus Salinibacillus, 95.1–92.8 % with members of the genus Virgibacillus, 94.7–93.2 % with members of the genus Oceanobacillus and 93.1–92.3 % with members of the genus Lentibacillus. On the basis of phylogenetic analysis and physiological and biochemical characteristics, it is proposed that strain B22T represents a novel species in a new genus, Paucisalibacillus globulus gen. nov., sp. nov. Strain B22T (=LMG 23148T=CIP 108857T) is the type strain of Paucisalibacillus globulus.


Sign in / Sign up

Export Citation Format

Share Document