scholarly journals Metabolome-Wide, Phylogenetically Controlled Comparison Indicates Higher Phenolic Diversity in Tropical Tree Species

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 554
Author(s):  
Guille Peguero ◽  
Albert Gargallo-Garriga ◽  
Joan Maspons ◽  
Karel Klem ◽  
Otmar Urban ◽  
...  

Tropical plants are expected to have a higher variety of defensive traits, such as a more diverse array of secondary metabolic compounds in response to greater pressures of antagonistic interactions, than their temperate counterparts. We test this hypothesis using advanced metabolomics linked to a novel stoichiometric compound classification to analyze the complete foliar metabolomes of four tropical and four temperate tree species, which were selected so that each subset contained the same amount of phylogenetic diversity and evenness. We then built Bayesian phylogenetic multilevel models to test for tropical–temperate differences in metabolite diversity for the entire metabolome and for four major families of secondary compounds. We found strong evidence supporting that the leaves of tropical tree species have a higher phenolic diversity. The functionally closer group of polyphenolics also showed moderate evidence of higher diversity in tropical species, but there were no differences either for the entire metabolome or for the other major families of compounds analyzed. This supports the interpretation that this tropical–temperate contrast must be related to the functional role of phenolics and polyphenolics.

Euphytica ◽  
2004 ◽  
Vol 138 (2) ◽  
pp. 113-121 ◽  
Author(s):  
Patricia Guadarrama ◽  
Javier Álvarez-Sánchez ◽  
Oscar Briones

2014 ◽  
Vol 38 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Vinod Prasad Khanduri ◽  
Kewat Sanjay Kumar ◽  
Chandra Mohan Sharma

IAWA Journal ◽  
2021 ◽  
pp. 1-18
Author(s):  
Marcela Blagitz ◽  
Anselmo Nogueira ◽  
Carmen Regina Marcati

Abstract Structural differences in the secondary vascular tissues among habitats can contribute to understanding species performances, especially regarding water and photosynthate transport. The pattern of association between the secondary xylem tissue and water availability from the environment has been widely studied, unlike the secondary phloem, which has been barely explored. Here, we evaluated the structural variation of the secondary xylem and phloem in stems of four populations of two tropical tree species under contrasting water conditions. We also investigated the mirrored structure between both tissues. At dry sites, Moquiniastrum polymorphum had higher vessel density, thicker xylem fibers cell walls, and taller rays in both tissues commonly associated with safe transport, in agreement with our expectations. In contrast, the populations of Zanthoxylum rhoifolium had most features in disagreement with the water availability of each site. The perforation and sieve plates, the ray composition, and the axial parenchyma were similar in the two tree species’ xylem and phloem tissues. However, the quantitative descriptors of cell sizes were not correlated between the xylem and phloem. In general, there is a different pattern of morphological variation across sites in the two tropical tree species, highlighting that any generalization regarding the vascular system structure across environments should be avoided. Xylem and phloem revealed a mirrored structure in a few qualitative features, not followed by the dimensions of different cell types. Future research needs to explore the causes of the unexpected structural variation in the vascular system across populations in tropical tree species.


ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
M. K. Adjaloo ◽  
W. Oduro ◽  
B. K. Banful

A study of the floral phenology of cocoa trees was carried out between 2006 and 2008 at Kubease in the Ashanti Region of Ghana, using one hundred cocoa trees from ten farm plots. The objective was to assess the contribution of floral phenology to the productivity of cocoa. Cocoa like all tropical tree species exhibited seasonally-related phenological patterns involving overlapping cycles under both intrinsic and extrinsic controls. However, unlike most tropical plants, flowering was in the rainy season. The production of new pods or cherelles increased during the major rainy season (June, July, and August), but was evenly distributed from the minor to the dry season. Production of small and medium pods peaked in August whereas production of large pods peaked in October. There was a positive correlation between new pod production and pods abortion (r = 0.69; n = 100; P < 0.05). Temperature, light intensity, and rainfall positively affected production of floral buds and production of open flowers. However, rainfall had the greatest influence on the phenological cycle of the cocoa plant. The floral phenological pattern also coincided with the activity of the main pollinators of cocoa which resulted in enhanced reproductive capacity for increased production of cocoa.


2019 ◽  
Vol 76 (4) ◽  
Author(s):  
Barbara Ghislain ◽  
Tancrède Alméras ◽  
Jonathan Prunier ◽  
Bruno Clair

Abstract Key message Gravitropic movements in angiosperm woody stems are achieved through the action of bark and/or wood motor, depending on the bark and wood fibre anatomy (with trellis structure or not; with G-layers or not). Bark motor is as efficient as wood motor to recover from tilting in young trees of 21 tropical species. Context Angiosperm trees produce tension wood to control their orientation through changes in stem curvature. Tension wood is classified into 3 anatomical groups: with unlignified G-layer, with lignified G-layer and without G-layer. Aims This study aimed at assessing whether this anatomical diversity reflects a diversity in efficiency of gravitropic movement. Methods The study was conducted on tropical seedling from the three anatomical groups. Seedlings were staked and grown tilted. At the end of the experiment, changes in curvature when releasing the stem from the stake and when removing bark were measured. Three parameters were computed to compare the global efficiency of gravitropism (stem gravitropic efficiency) and the specific efficiency of motor mechanism based on wood (maturation strain of tension wood) and bark (standardized debarking curvature). Results The maturation strain of tension wood was similar between species with unlignified and lignified G-layer. Species without G-layer exhibited low maturation strain and large debarking curvature, showing they rely on bark for gravitropism. Bark and wood achieved similar motor efficiency. Conclusion Lignin does not affect the generation of tensile stress in the G-layer. Bark can be as efficient as wood as a motor of gravitropic movements.


2008 ◽  
Vol 10 (4) ◽  
pp. 1001-1004 ◽  
Author(s):  
Marcela Corbo Guidugli ◽  
Tatiana de Campos ◽  
Adna Cristina Barbosa de Sousa ◽  
Juliana Massimino Feres ◽  
Alexandre Magno Sebbenn ◽  
...  

2021 ◽  
Author(s):  
Martijn Slot ◽  
Tantawat Nardwattanawong ◽  
Georgia G. Hernández ◽  
Amauri Bueno ◽  
Markus Riederer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document