scholarly journals Classification of Cucumber Leaves Based on Nitrogen Content Using the Hyperspectral Imaging Technique and Majority Voting

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 898
Author(s):  
Sajad Sabzi ◽  
Razieh Pourdarbani ◽  
Mohammad Hossein Rohban ◽  
Alejandro Fuentes-Penna ◽  
José Luis Hernández-Hernández ◽  
...  

Improper usage of nitrogen in cucumber cultivation causes nitrate accumulation in the fruit and results in food poisoning in humans; therefore, mandatory evaluation of food products becomes inevitable. Hyperspectral imaging has a very good ability to evaluate the quality of fruits and vegetables in a non-destructive manner. The goal of the present paper was to identify excess nitrogen in cucumber plants. To obtain a reliable result, the majority voting method was used, which takes into account the unanimity of five classifiers, namely, the hybrid artificial neural network–imperialism competitive algorithm (ANN-ICA), the hybrid artificial neural network–harmonic search (ANN-HS) algorithm, linear discrimination analysis (LDA), the radial basis function network (RBF), and the K-nearest-neighborhood (KNN). The wavelengths of 723, 781, and 901 nm were determined as optimal wavelengths using the hybrid artificial neural network–biogeography-based optimization (ANN-BBO) algorithm, and the performance of classifiers was investigated using the optimal spectrum. The results of a t-test showed that there was no significant difference in the precision of the algorithm when using the optimal wavelengths and wavelengths of the whole range. The correct classification rate of the classifiers ANN-ICA, ANN-HS, LDA, RBF, and KNN were 96.14%, 96.11%, 95.73%, 64.03%, and 95.24%, respectively. The correct classification rate of majority voting (MV) was 95.55% for test data in 200 iterations, which indicates the system was successful in distinguishing nitrogen-rich leaves from leaves with a standard content of nitrogen.

Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 113 ◽  
Author(s):  
Razieh Pourdarbani ◽  
Sajad Sabzi ◽  
Davood Kalantari ◽  
José Luis Hernández-Hernández ◽  
Juan Ignacio Arribas

Since different varieties of crops have specific applications, it is therefore important to properly identify each cultivar, in order to avoid fake varieties being sold as genuine, i.e., fraud. Despite that properly trained human experts might accurately identify and classify crop varieties, computer vision systems are needed since conditions such as fatigue, reproducibility, and so on, can influence the expert’s judgment and assessment. Chickpea (Cicer arietinum L.) is an important legume at the world-level and has several varieties. Three chickpea varieties with a rather similar visual appearance were studied here: Adel, Arman, and Azad chickpeas. The purpose of this paper is to present a computer vision system for the automatic classification of those chickpea varieties. First, segmentation was performed using an Hue Saturation Intensity (HSI) color space threshold. Next, color and textural (from the gray level co-occurrence matrix, GLCM) properties (features) were extracted from the chickpea sample images. Then, using the hybrid artificial neural network-cultural algorithm (ANN-CA), the sub-optimal combination of the five most effective properties (mean of the RGB color space components, mean of the HSI color space components, entropy of GLCM matrix at 90°, standard deviation of GLCM matrix at 0°, and mean third component in YCbCr color space) were selected as discriminant features. Finally, an ANN-PSO/ACO/HS majority voting (MV) ensemble methodology merging three different classifier outputs, namely the hybrid artificial neural network-particle swarm optimization (ANN-PSO), hybrid artificial neural network-ant colony optimization (ANN-ACO), and hybrid artificial neural network-harmonic search (ANN-HS), was used. Results showed that the ensemble ANN-PSO/ACO/HS-MV classifier approach reached an average classification accuracy of 99.10 ± 0.75% over the test set, after averaging 1000 random iterations.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 721
Author(s):  
Krzysztof Adamczyk ◽  
Wilhelm Grzesiak ◽  
Daniel Zaborski

The aim of the present study was to verify whether artificial neural networks (ANN) may be an effective tool for predicting the culling reasons in cows based on routinely collected first-lactation records. Data on Holstein-Friesian cows culled in Poland between 2017 and 2018 were used in the present study. A general discriminant analysis (GDA) was applied as a reference method for ANN. Considering all predictive performance measures, ANN were the most effective in predicting the culling of cows due to old age (99.76–99.88% of correctly classified cases). In addition, a very high correct classification rate (99.24–99.98%) was obtained for culling the animals due to reproductive problems. It is significant because infertility is one of the conditions that are the most difficult to eliminate in dairy herds. The correct classification rate for individual culling reasons obtained with GDA (0.00–97.63%) was, in general, lower than that for multilayer perceptrons (MLP). The obtained results indicated that, in order to effectively predict the previously mentioned culling reasons, the following first-lactation parameters should be used: calving age, calving difficulty, and the characteristics of the lactation curve based on Wood’s model parameters.


Author(s):  
Sandip K Lahiri ◽  
Kartik Chandra Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and genetic algorithm technique (ANN-GA) for efficient tuning of ANN meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN-GA method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters.


Author(s):  
Wan Nazirah Wan Md Adnan ◽  
Nofri Yenita Dahlan ◽  
Ismail Musirin

<span lang="EN-US">This paper aims to develop a hybrid artificial neural network for Option C Measurement and Verification model to predict monthly building energy consumption. In this work, baseline energy model development using artificial neural networks embedded with artificial bee colony optimization and cross validation technique for a small dataset were considered. Artificial bee colony optimization with coefficient of correlation fitness function was used in optimizing the neural network training process and selecting the optimal values of initial weights and biases. Working days, class days and cooling degree days were used as input meanwhile monthly electricity consumption as an output of artificial neural network. The results indicated that this hybrid artificial neural network model provided better prediction results compared to the other model. The best model with the highest value of coefficient of correlation was selected as the baseline model hence is used to determine the saving. </span>


2021 ◽  
Vol 108 (Supplement_8) ◽  
Author(s):  
Edgard Efren Lozada Hernandez ◽  
Tania Aglae Ramírez del Real ◽  
Dagoberto Armenta Medina ◽  
Jose Francisco Molina Rodriguez ◽  
Juan ramon Varela Reynoso

Abstract Aim “Incisional Hernia (IH) has an incidence of 10-23%, which can increase to 38% in specific risk groups. The objective of this study was developed and validated an artificial neural network (ANN) model for the prediction of IH after midline laparotomy (ML) and this model can be used by surgeons to help judge a patient’s risk for IH.” Material and Methods “A retrospective, single arm, observational cohort trial was conducted from January 2016 to December 2020. Study participants were recruited from patients undergoing ML for elective or urgent surgical indication. Using logistic regression and ANN models, we evaluated surgical treated IH, wound dehiscence, morbidity, readmission, and mortality using the area under the receiver operating characteristic curves, true-positive rate, true-negative rate, false-positive rate, and false-negative rates.” Results “There was no significant difference in the power of the ANN and logistic regression for predicting IH, wound dehiscence, mortality, readmission, and all morbidities after ML. The resulting model consisted of 4 variables: surgical site infection, emergency surgery, previous laparotomy, and BMI(Kg/m2) &gt; 26. The patient with the four positive factors has a 73% risk of developing incisional hernia. The area under the curve was 0.82 (95% IC 0.76-0.87). Conclusions “ANNs perform comparably to logistic regression models in the prediction of IH. ANNs may be a useful tool in risk factor analysis of IH and clinical applications.”


Sign in / Sign up

Export Citation Format

Share Document