scholarly journals Soil Nitrate Nitrogen Content and Grain Yields of Organically Grown Cereals as Affected by a Strip Tillage and Forage Legume Intercropping

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1453
Author(s):  
Aušra Arlauskienė ◽  
Viktorija Gecaitė ◽  
Monika Toleikienė ◽  
Lina Šarūnaitė ◽  
Žydrė Kadžiulienė

Reducing tillage intensity and increasing crop diversity by including perennial legumes is an agrotechnical practice that strongly affects the soil environment. Strip tillage may be beneficial in the forage legume–cereals intercropping system due to more efficient utilization of biological nitrogen. Field experiments were conducted on a clay loam Cambisol to determine the effect of forage legume–winter wheat strip tillage intercropping on soil nitrate nitrogen (N-NO3) content and cereal productivity in various sequences of rotation in organic production systems. Forage legumes (Medicago lupulina L., Trifolium repens L., T. alexandrinum L.) grown in pure and forage legume–winter wheat (Triticum aestivum L.) strip tillage intercrops were studied. Conventional deep inversion tillage was compared to strip tillage. Nitrogen supply to winter wheat was assessed by the change in soil nitrate nitrogen content (N-NO3) and total N accumulation in yield (grain and straw). Conventional tillage was found to significantly increase N-NO3 content while cultivating winter wheat after forage legumes in late autumn (0–30 cm layer), after growth resumption in spring (30–60 cm), and in autumn after harvesting (30–60 cm). Soil N-NO3 content did not differ significantly between winter wheat strip sown in perennial legumes or oat stubble. Winter wheat grain yields increased with increasing N-NO3 content in soil. The grain yield was not significantly different when comparing winter wheat–forage legume strip intercropping (without mulching) to strip sowing in oat stubble. In forage legume–winter wheat strip intercropping, N release from legumes was weak and did not meet wheat nitrogen requirements.

1990 ◽  
Vol 114 (2) ◽  
pp. 171-176 ◽  
Author(s):  
K. Chaney

SUMMARYThe nitrate nitrogen content of the soil (0–90 cm) was measured immediately after the harvest of winter wheat at eight sites in central and eastern England in 1987 and 1988. On average, 50% of the total nitrate detected was in the 0–30 cm, 30% in the 30–60 cm and 20% in the 60–90 cm soil horizon. Although soil nitrate N increased with the amount of N fertilizer applied, it was not a linear relationship. There were small nonsignificant increases in soil nitrate up to the optimum fertilizer rate for yield but, once the optimum was reached, further addition of fertilizer increased nitrate contents significantly.Therefore, applying the correct quantity of N for high grain yield did not significantly increase soil nitrate residues after harvest compared with the no-fertilizer treatment. This emphasizes the importance of applying the appropriate rate of N for each crop, because applying too much is not only uneconomic but also significantly increases the amount of mineral N which could be subsequently leached over the winter.


2013 ◽  
Vol 790 ◽  
pp. 202-205
Author(s):  
Hui Yan Gao ◽  
Lu Hua Yang ◽  
Tian Li ◽  
Zi Peng Guo

Soil moisture and nitrate nitrogen were measured respectively in planting area and non-planting area in RANZHUANG experiment station from 2011 to 2012. The effect of human activity on soil moisture and nitrate nitrogen was analyzed. The results show that soil moisture content varies from 8.61% to 30.09% within 0~250cm depth and is tended to be stable below 250cm deep layer in non-planting area. The distribution of soil nitrate nitrogen is a single peak curve, the peak moves downward at a speed of 0.81cm/d in percolation of rainfall. Soil moisture varies form 21.23% to 41.67% within 0~400cm depth and is tended to be stable below 400cm deep layer in planting area. Nitrate nitrogen is mainly accumulated at 0~100cm deep soil layer in the wheat growth period. In the maize growth period, the distribution of nitrate nitrogen is double peak curve in 0~500cm soil profile. The upper peak occurs at 40~100cm soil layer, the peak of nitrate nitrogen content is between 26.7~54.6mg/kg; the lower emerges at 150~260cm soil profile, the value is between 36.7~106.36mg/kg. Deep percolation of the nitrate nitrogen is obvious due to unreasonable irrigation and fertilization. The nitrate nitrogen content accounts for 52.3% of the total nitrate nitrogen below the root zone soil, which is a potential contamination source of groundwater.


1982 ◽  
Vol 9 (6) ◽  
pp. 641 ◽  
Author(s):  
WM Blacklow

Flag leaves of wheat in the field took up a solution containing 30 mM K15NO3 through their cut tips. Treatment was applied 37 days after anthesis and uptake was allowed to continue for intervals up to 76 h by which time about 0.6 mg of 15N nitrate nitrogen was taken up. At the time of treatment, the flag leaves from plants grown under two levels of nitrogen nutrition had lost half of their nitrogen content and were exporting it at about 0.2 mg per day. Despite this state of senescence the flag leaves were able to reduce the nitrate and 30-40% of that taken up was translocated to the grain within 3 days. No nitrate accumulated in the leaves or grain. Emission spectrometry was sufficiently sensitive to detect 15N which increased from 0.02 to 1.18% of grain nitrogen during the 76 h of accumulation.


2019 ◽  
Vol 12 (1) ◽  
pp. 95 ◽  
Author(s):  
Hongjun Li ◽  
Yuming Zhang ◽  
Yuping Lei ◽  
Vita Antoniuk ◽  
Chunsheng Hu

Compared to conventional laboratory testing methods, crop nitrogen estimation methods based on canopy spectral characteristics have advantages in terms of timeliness, cost, and practicality. A variety of rapid and non-destructive estimation methods based on the canopy spectrum have been developed on the scale of space, sky, and ground. In order to understand the differences in estimation accuracy and applicability of these methods, as well as for the convenience of users to select the suitable technology, models for estimation of nitrogen status of winter wheat were developed and compared for three methods: drone equipped with a multispectral camera, soil plant analysis development (SPAD) chlorophyll meter, and smartphone photography. Based on the correlations between observed nitrogen status in winter wheat and related vegetation indices, green normalized difference vegetation index (GNDVI) and visible atmospherically resistant index (VARI) were selected as the sensitive vegetation indices for the drone equipped with a multispectral camera and smartphone photography methods, respectively. The correlation coefficients between GNDVI, SPAD, and VARI were 0.92 ** and 0.89 **, and that between SPAD and VARI was 0.90 **, which indicated that three vegetation indices for these three estimation methods were significantly related to each other. The determination coefficients of the 0–90 cm soil nitrate nitrogen content estimation models for the drone equipped with a multispectral camera, SPAD, and smartphone photography methods were 0.63, 0.54, and 0.81, respectively. In the estimation accuracy evaluation, the method of smartphone photography had the smallest root mean square error (RMSE = 9.80 mg/kg). The accuracy of the smartphone photography method was slightly higher than the other two methods. Due to the limitations of these models, it was found that the crop nitrogen estimation methods based on canopy spectrum were not suitable for the crops under severe phosphate deficiency. In addition, in estimation of soil nitrate nitrogen content, there were saturation responses in the estimation indicators of the three methods. In order to introduce these three methods in the precise management of nitrogen fertilizer, it is necessary to further improve their estimation models.


1995 ◽  
Vol 45 (1) ◽  
pp. 61-67 ◽  
Author(s):  
I. R. Richards ◽  
P. A. Wallace ◽  
G. A. Paulson

1998 ◽  
Vol 38 (5) ◽  
pp. 489 ◽  
Author(s):  
R. C. Dalal ◽  
W. M. Strong ◽  
E. J. Weston ◽  
J. E. Cooper ◽  
G. B. Wildermuth ◽  
...  

Summary. In this study, the benefits of chickpea–wheat rotation compared with continuous wheat cropping (wheat–wheat rotation) were evaluated for their effects on soil nitrate nitrogen, wheat grain yields and grain protein concentrations, and water-use efficiency at Warra, southern Queensland from 1988 to 1996. Benefits in terms of wheat grain yields varied, from 17% in 1993 to 61% in 1990, with a mean increase in grain yield of 40% (825 kg/ha). Wheat grain protein concentration increased from 9.4% in a wheat–wheat rotation to 10.7% in a chickpea–wheat rotation, almost a 14% increase in grain protein. There was a mean increase in soil nitrate nitrogen of 35 kg N/ha.1.2 m after 6 months of fallow following chickpea (85 kg N/ha) compared with continuous wheat cropping (50 kg N/ha). This was reflected in additional nitrogen in the wheat grain (20 kg N/ha) and above-ground plant biomass (25 kg N/ha) following chickpea. Water-use efficiency by wheat increased from a mean value of 9.2 kg grain/ha. mm in a wheat–wheat rotation to 11.7 kg grain/ha.mm in a chickpea–wheat rotation. The water-use efficiency values were closely correlated with presowing nitrate nitrogen, and showed no marked distinction between the 2 cropping sequences. Although presowing available water in soil in May was similar in both the chickpea–wheat rotation and the wheat–wheat rotation in all years except 1996, wheat in the former used about 20 mm additional water and enhanced water-use efficiency. Thus, by improving soil fertility through restorative practices such as incorporating chickpea in rotation, water-use efficiency can be enhanced and consequently water runoff losses reduced. Furthermore, beneficial effects of chickpea in rotation with cereals could be enhanced by early to mid sowing (May–mid June) of chickpea, accompanied by zero tillage practice. Wheat of ‘Prime Hard’ grade protein (≥13%) could be obtained in chickpea–wheat rotation by supplementary application of fertiliser N to wheat. In this study, incidence of crown rot of wheat caused by Fusarium graminearum was negligible, and incidence and severity of common root rot of wheat caused by Bipolaris sorokiniana were essentially similar in both cropping sequences and inversely related to the available water in soil at sowing. No other soil-borne disease was observed. Therefore, beneficial effects of chickpea on wheat yields and grain protein were primarily due to additional nitrate nitrogen following the legume crop and consequently better water-use efficiency.


Sign in / Sign up

Export Citation Format

Share Document