scholarly journals Recommendation of the Amount of Nitrogen Top Dressing based on Soil Nitrate Nitrogen Content for Leaf Perilla (Perilla frutescens) under the Plastic Film House

2011 ◽  
Vol 44 (6) ◽  
pp. 1112-1117 ◽  
Author(s):  
Seong-Soo Kang ◽  
Ju-Young Lee ◽  
Jwa-Kyung Sung ◽  
Hyo-Young Gong ◽  
Hyung-Jin Jung ◽  
...  
2013 ◽  
Vol 790 ◽  
pp. 202-205
Author(s):  
Hui Yan Gao ◽  
Lu Hua Yang ◽  
Tian Li ◽  
Zi Peng Guo

Soil moisture and nitrate nitrogen were measured respectively in planting area and non-planting area in RANZHUANG experiment station from 2011 to 2012. The effect of human activity on soil moisture and nitrate nitrogen was analyzed. The results show that soil moisture content varies from 8.61% to 30.09% within 0~250cm depth and is tended to be stable below 250cm deep layer in non-planting area. The distribution of soil nitrate nitrogen is a single peak curve, the peak moves downward at a speed of 0.81cm/d in percolation of rainfall. Soil moisture varies form 21.23% to 41.67% within 0~400cm depth and is tended to be stable below 400cm deep layer in planting area. Nitrate nitrogen is mainly accumulated at 0~100cm deep soil layer in the wheat growth period. In the maize growth period, the distribution of nitrate nitrogen is double peak curve in 0~500cm soil profile. The upper peak occurs at 40~100cm soil layer, the peak of nitrate nitrogen content is between 26.7~54.6mg/kg; the lower emerges at 150~260cm soil profile, the value is between 36.7~106.36mg/kg. Deep percolation of the nitrate nitrogen is obvious due to unreasonable irrigation and fertilization. The nitrate nitrogen content accounts for 52.3% of the total nitrate nitrogen below the root zone soil, which is a potential contamination source of groundwater.


1990 ◽  
Vol 114 (2) ◽  
pp. 171-176 ◽  
Author(s):  
K. Chaney

SUMMARYThe nitrate nitrogen content of the soil (0–90 cm) was measured immediately after the harvest of winter wheat at eight sites in central and eastern England in 1987 and 1988. On average, 50% of the total nitrate detected was in the 0–30 cm, 30% in the 30–60 cm and 20% in the 60–90 cm soil horizon. Although soil nitrate N increased with the amount of N fertilizer applied, it was not a linear relationship. There were small nonsignificant increases in soil nitrate up to the optimum fertilizer rate for yield but, once the optimum was reached, further addition of fertilizer increased nitrate contents significantly.Therefore, applying the correct quantity of N for high grain yield did not significantly increase soil nitrate residues after harvest compared with the no-fertilizer treatment. This emphasizes the importance of applying the appropriate rate of N for each crop, because applying too much is not only uneconomic but also significantly increases the amount of mineral N which could be subsequently leached over the winter.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1453
Author(s):  
Aušra Arlauskienė ◽  
Viktorija Gecaitė ◽  
Monika Toleikienė ◽  
Lina Šarūnaitė ◽  
Žydrė Kadžiulienė

Reducing tillage intensity and increasing crop diversity by including perennial legumes is an agrotechnical practice that strongly affects the soil environment. Strip tillage may be beneficial in the forage legume–cereals intercropping system due to more efficient utilization of biological nitrogen. Field experiments were conducted on a clay loam Cambisol to determine the effect of forage legume–winter wheat strip tillage intercropping on soil nitrate nitrogen (N-NO3) content and cereal productivity in various sequences of rotation in organic production systems. Forage legumes (Medicago lupulina L., Trifolium repens L., T. alexandrinum L.) grown in pure and forage legume–winter wheat (Triticum aestivum L.) strip tillage intercrops were studied. Conventional deep inversion tillage was compared to strip tillage. Nitrogen supply to winter wheat was assessed by the change in soil nitrate nitrogen content (N-NO3) and total N accumulation in yield (grain and straw). Conventional tillage was found to significantly increase N-NO3 content while cultivating winter wheat after forage legumes in late autumn (0–30 cm layer), after growth resumption in spring (30–60 cm), and in autumn after harvesting (30–60 cm). Soil N-NO3 content did not differ significantly between winter wheat strip sown in perennial legumes or oat stubble. Winter wheat grain yields increased with increasing N-NO3 content in soil. The grain yield was not significantly different when comparing winter wheat–forage legume strip intercropping (without mulching) to strip sowing in oat stubble. In forage legume–winter wheat strip intercropping, N release from legumes was weak and did not meet wheat nitrogen requirements.


1995 ◽  
Vol 45 (1) ◽  
pp. 61-67 ◽  
Author(s):  
I. R. Richards ◽  
P. A. Wallace ◽  
G. A. Paulson

Euphytica ◽  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Wenqing Tan ◽  
Di Zhang ◽  
Nana Yuyama ◽  
Jun Chen ◽  
Shinichi Sugita ◽  
...  

1992 ◽  
Vol 32 (4) ◽  
pp. 473 ◽  
Author(s):  
G Gibson ◽  
BJ Radford ◽  
RGH Nielsen

The effects of tillage frequency (conventional, reduced and zero), primary tillage implement (disc, blade and chisel plough), stubble management (retention and removal), gypsum application, and paraplowing were examined with respect to soil water storage, soil nitrate accumulation, crop establishment, crop growth, grain yield and grain nitrogen content for 4 successive sorghum crops on a sodic, texture-contrast soil in south west Queensland. Retention of sorghum stubble (v. removal) produced an increase in mean yield of sorghum grain of 393 kg/ha, due to increased soil water extraction and increased water use efficiency by the following crop. The highest mean yield occurred after reduced blade tillage with stubble retained. Zero tillage with stubble removed gave the lowest mean grain yield. Zero tillage always had the lowest quantity of soil nitrate-nitrogen at sowing. In one fallow, increased aggressiveness of primary tillage (disc v. blade plough) increased the quantity of nitrate-nitrogen in the top 60 cm of soil at sowing. These effects on available soil nitrogen did not result in corresponding differences in grain nitrogen content. Results indicate that for optimum fallow management on this texture-contrast soil in south west Queensland, sorghum residues should be retained, tillage frequency should be reduced, but not to zero, blade ploughing should be preferred to discing, and gypsum application should not be practised.


2007 ◽  
Vol 99 (3) ◽  
pp. 599-606 ◽  
Author(s):  
Nanga Mady Kaye ◽  
Stephen C. Mason ◽  
Tomie D. Galusha ◽  
Martha Mamo

1936 ◽  
Vol 26 (2) ◽  
pp. 249-257 ◽  
Author(s):  
A. H. Lewis

The results show clearly a more rapid and greater uptake of ammonium than of nitrate nitrogen by perennial rye grass grown in a sand-bentonite medium of pH 7·61. The extent to which the extra uptake with added ammonia was reflected in increased yields was dependent upon the age of the grass.Except in the very early stages the percentage nitrogen content of the herbage was higher where nitrate nitrogen was applied than where ammonium nitrogen was applied. This indicates that any nitrate absorbed by the plant was less, efficient in increasing yields than was ammonium nitrogen.The percentage P205 content of the grass was higher where the nitrogen was applied in the ammoniacal form than where it was applied as nitrate, and it appears that this greater P205 uptake with ammonium nitrogen resulted in increased growth.


Sign in / Sign up

Export Citation Format

Share Document