scholarly journals Molecular Screening of Microorganisms Associated with Discolored Wood in Dead European Beech Trees Suffered from Extreme Drought Event Using Next Generation Sequencing

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2092
Author(s):  
Witoon Purahong ◽  
Benjawan Tanunchai ◽  
Sara Fareed Mohamed Wahdan ◽  
François Buscot ◽  
Ernst-Detlef Schulze

Drought events weaken trees and make them vulnerable to attacks by diverse plant pathogens. Here, we propose a molecular method for fast screening of microorganisms associated with European beech decline after an extreme drought period (2018) in a forest of Thuringia, Germany. We used Illumina sequencing with a recent bioinformatics approach based on DADA2 to identify archaeal, bacterial, and fungal ASVs (amplicon sequence variants) based on bacterial and archaeal 16S and fungal ITS genes. We show that symptomatic beech trees are associated with both bacterial and fungal plant pathogens. Although the plant pathogen sequences were detected in both discolored and non-discolored wood areas, they were highly enriched in the discolored wood areas. We show that almost each individual tree was associated with a different combination of pathogens. Cytospora spp. and Neonectria coccinea were among the most frequently detected fungal pathogens, whereas Erwinia spp. and Pseudomonas spp. were the dominant bacterial plant pathogens. We demonstrate that bacterial plant pathogens may be of major importance in beech decline.

2014 ◽  
Vol 11 (24) ◽  
pp. 7159-7178 ◽  
Author(s):  
A. Piayda ◽  
M. Dubbert ◽  
C. Rebmann ◽  
O. Kolle ◽  
F. Costa e Silva ◽  
...  

Abstract. Savannah-type ecosystems account for 26–30% of global gross primary productivity GPP, with water being one of the major driving factors. In Europe, savannah-type woodlands cover an area of about 1.5 million ha. Here, the recent past has shown a significant decrease in precipitation P in winter and spring as well as a decrease in total annual precipitation. Strong effects on local water balance and carbon sink strength have thus been reported due to changes in precipitation regime. The objective of this study is to quantify the impact of the extreme drought event in 2012 on the water balance, gross primary productivity and carbon sink strength of a typical Portuguese cork-oak woodland (montado) compared to the wet year of 2011. Physiological responses of the dominant tree species Quercus suber (L.) are disentangled employing combined photosynthesis and stomatal conductance modelling. Precipitation effectiveness ET/P increased from 86% in 2011 to 122% in the 2012 dry year due to deep soil or groundwater access of the Q. suber trees leaving no water for groundwater replenishment. Understorey and overstorey GPP were strongly reduced, by 53 and 28%, respectively, in 2012 compared to 2011, due to the late onset of the autumn rains in 2011 and an additional severe winter/spring drought. However, the ecosystem was still a carbon sink in both years, but with a 38% reduced sink strength under extreme drought in 2012 compared to 2011. The combined photosynthesis–stomatal conductance model yielded the best results if it was allowed to adjust photosynthetic and stomatal parameters simultaneously. If stomatal response was modelled with the Leuning approach, which allows for a different sensitivity to vapour pressure deficit, the stomatal model parameters were highly coupled. A change in either of the parameters needed to be compensated by the other to guarantee a stable sensitivity of stomatal conductance to assimilation, independent of variations in vapour pressure deficit. The Q. suber trees showed a 37% reduced stomatal conductance during the drought period of 2012 compared to 2011, due to water supply limitations. In response to reduced leaf-internal CO2 availability, the trees strongly reduced the apparent maximum carboxylation rate by 43% in 2012 compared to 2011. Unexpectedly, the optimum temperature Topt of the maximum electron transport rate decreased during the drought period, enhancing the susceptibility of the trees to high temperature stress during the summer. Our results suggest that, if the trend of decreasing annual precipitation and changed precipitation patterns on the Iberian Peninsula continues, sustained effects on local groundwater reservoirs, understorey species composition and tree mortality have to be expected in the long term. To model the effect of drought on the montado ecosystem successfully, variable apparent maximum carboxylation rate Vc,max, stomatal conductance parameter m and vapour pressure deficit sensitivity parameter D0 need to be incorporated into photosynthesis–stomatal conductance modelling.


2014 ◽  
Vol 11 (7) ◽  
pp. 10365-10417 ◽  
Author(s):  
A. Piayda ◽  
M. Dubbert ◽  
C. Rebmann ◽  
O. Kolle ◽  
F. Costa e Silva ◽  
...  

Abstract. Savannah-type ecosystems account for 26–30% of global gross primary productivity GPP with water being one of the major driving factors. In Europe, savannah-type woodlands cover an area of about 1.5 million ha. Here, the recent past has shown a significant decrease of precipitation P in winter and spring as well as decrease of total annual precipitation. Strong effects on local water balance and carbon sink strength have thus been reported due to changes in precipitation regime. The objective of this study is to quantify the impact of the extreme drought event in 2012 on the water balance, gross primary productivity and carbon sink strength of a typical Portuguese cork-oak woodland (montado) compared to the wet year 2011. Physiological responses of the dominant tree species Quercus suber (L.) are disentangled, employing combined photosynthesis and stomatal conductance modelling. Precipitation effectiveness ET / P increased from 86% in 2011 to 122% in the dry year 2012 due to deep soil or ground water access of the Q. suber trees leaving no water for ground water replenishment. Understorey and overstorey GPP were strongly reduced by 53% and 28%, respectively, in 2012 compared to 2011 due to the late onset of the autumn rains in 2011 and an additional severe winter/spring drought. However, the ecosystem was still a carbon sink in both years but with a 38% reduced sink strength under extreme drought in 2012 compared to 2011. The combined photosynthesis-stomatal conductance model yielded best results if it was allowed to adjust photosynthetic and stomatal parameters simultaneously. If stomatal response was modelled with the Leuning approach, which allows for a different sensitivity to vapour pressure deficit, the stomatal model parameters were highly coupled. A change in either of the parameters needed to be compensated by the other to guarantee a stable sensitivity of stomatal conductance to assimilation, independently from variations in vapour pressure deficit. The Q. suber trees showed a 31% reduced stomatal conductance during the drought period 2012 compared to 2011 due to water supply limitations. In response to reduced leaf internal CO2 availability, the trees strongly reduced apparent maximum carboxylation rate by 39% in 2012 compared to 2011. Unexpectedly, the optimum temperature Topt of maximum electron transport rate decreased during the drought period, enhancing the susceptibility of the trees to high temperature stress during the summer. Our results suggest that, if the trend of decreasing annual precipitation and changed precipitation pattern on the Iberian Peninsula continues, sustained effects on local ground water reservoirs, understorey species composition and tree mortality have to be expected in the long term. To successfully model the effect of drought on the montado ecosystem, variable apparent maximum carboxylation rate Vc,max, stomatal conductance parameter m and vapor pressure deficit sensitivity parameter D0 need to be incorporated in photosynthesis-stomatal conductance modelling.


2008 ◽  
Vol 20 (1) ◽  
pp. 62 ◽  
Author(s):  
M. JALLI ◽  
P. LAITINEN ◽  
S. LATVALA

Fungal plant pathogens causing cereal diseases in Finland have been studied by a literature survey, and a field survey of cereal leaf spot diseases conducted in 2009. Fifty-seven cereal fungal diseases have been identified in Finland. The first available references on different cereal fungal pathogens were published in 1868 and the most recent reports are on the emergence of Ramularia collo-cygni and Fusarium langsethiae in 2001. The incidence of cereal leaf spot diseases has increased during the last 40 years. Based on the field survey done in 2009 in Finland, Pyrenophora teres was present in 86%, Cochliobolus sativus in 90% and Rhynchosporium secalis in 52% of the investigated barley fields. Mycosphaerella graminicola was identified for the first time in Finnish spring wheat fields, being present in 6% of the studied fields. Stagonospora nodorum was present in 98% and Pyrenophora tritici-repentis in 94% of spring wheat fields. Oat fields had the fewest fungal diseases. Pyrenophora chaetomioides was present in 63% and Cochliobolus sativus in 25% of the oat fields studied.;


2000 ◽  
Vol 6 (S2) ◽  
pp. 680-681 ◽  
Author(s):  
T. M. Bourett ◽  
K. J. Czymmek ◽  
T. M. Dezwaan ◽  
J. A. Sweigard ◽  
R. J. Howard

Specific gene products of both pathogens and hosts have been implicated as decisive elements during plant pathogenesis. While expression of some of these genes is constitutive, that of others is likely ephemeral and activated only during a particular stage of the interaction. Because the relative timing of expression may be critical, transcription and translation have often been addressed by extracting mRNA and proteins from infected plant tissue. This approach, however, cannot readily detect proteins of low abundance in bulk samples nor offer much useful information on cell-cell interaction. Only a cytological analysis that employs microscopy can resolve the temporal and spatial details of gene expression. Typically, such protein localization studies have required specific antibodies, but these large probe molecules do not diffuse into living or conventionally fixed cells of either fungal pathogens or plant hosts. For TEM analysis, these permeability-imposed limitations have been reduced by thin sectioning to render accessible antibody binding sites.


2011 ◽  
Vol 115 (3-4) ◽  
pp. 173-184 ◽  
Author(s):  
Jing Yang ◽  
Daoyi Gong ◽  
Wenshan Wang ◽  
Miao Hu ◽  
Rui Mao

2017 ◽  
Vol 62 (S1) ◽  
pp. S131-S146 ◽  
Author(s):  
Felipe S. Pacheco ◽  
Marcela Miranda ◽  
Luciano P. Pezzi ◽  
Arcilan Assireu ◽  
Marcelo M. Marinho ◽  
...  

2006 ◽  
Vol 19 (3) ◽  
pp. 270-279 ◽  
Author(s):  
Chiyumi Shimada ◽  
Volker Lipka ◽  
Richard O'Connell ◽  
Tetsuro Okuno ◽  
Paul Schulze-Lefert ◽  
...  

Pathogenesis of nonadapted fungal pathogens is often terminated coincident with their attempted penetration into epidermal cells of nonhost plants. The genus Colletotrichum represents an economically important group of fungal plant pathogens that are amenable to molecular genetic analysis. Here, we investigated interactions between Arabidopsis and Colletotrichum to gain insights in plant and pathogen processes activating nonhost resistance responses. Three tested nonadapted Colletotrichum species differentiated melanized appressoria on Arabidopsis leaves but failed to form intracellular hyphae. Plant cells responded to Colletotrichum invasion attempts by the formation of PMR4/GSL5-dependent papillary callose. Appressorium differentiation and melanization were insufficient to trigger this localized plant cell response, but analysis of nonpathogenic C. lagenarium mutants implicates penetration-peg formation as the inductive cue. We show that Arabidopsis PEN1 syntaxin controls timely accumulation of papillary callose but is functionally dispensable for effective preinvasion (penetration) resistance in nonhost interactions. Consistent with this observation, green fluorescent protein-tagged PEN1 did not accumulate at sites of attempted penetration by either adapted or nonadapted Colletotrichum species, in contrast to the pronounced focal accumulations of PEN1 associated with entry of powdery mildews. We observed extensive reorganization of actin microfilaments leading to polar orientation of large actin bundles towards appressorial contact sites in interactions with the nonadapted Colletotrichum species. Pharmacological inhibition of actin filament function indicates a functional contribution of the actin cytoskeleton for both preinvasion resistance and papillary callose formation. Interestingly, the incidence of papilla formation at entry sites was greatly reduced in interactions with C. higginsianum isolates, indicating that this adapted pathogen may suppress preinvasion resistance at the cell periphery.


Sign in / Sign up

Export Citation Format

Share Document