scholarly journals Effects of Shade and Planting Methods on the Growth of Heracleum moellendorffii and Adenophora divaricata in Different Soil Moisture and Nutrient Conditions

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2203
Author(s):  
Woo Bin Youn ◽  
Jonathan Ogayon Hernandez ◽  
Byung Bae Park

In this study, the interacting effects of shade and planting methods on the growth and competitive ability of two understory plants Heracleum moellendorffii Hance and Adenophora divaricata Franch. & Sav. were investigated under different soil moisture and nutrient conditions. One-year-old seedlings were subjected to different light levels (0%, 35%, and 55% shade) and planting methods (monoculture and mixed) under contrasting soil moisture (1.2 L/m2 and 2.3 L/m2 of water) and soil nutrient conditions (unfertilized and fertilized). Here, shading significantly improved the height growth of H. moellendorffii (10–20 cm increase) in unfertilized and fertilized plots and at high soil moisture conditions. Contrarily, A. divaricata seedlings planted singly at full sunlight yielded a higher aboveground biomass growth (8–17 g plant−1), compared with those shaded and intercropped seedlings (0.9–3.9 g plant−1). The increased competitiveness of H. moellendorffii suppressed the growth of A. divaricata across different light conditions when planted together. The amount of light, soil moisture, and nutrients and their interactions significantly affected the growth of the seedlings, resulting in asymmetric interspecific competition between the two species. Results provide us with a better understanding of the environmental factors affecting plant growth for forest farming in the understory.

HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 599E-600
Author(s):  
Regina P. Bracy ◽  
Richard L. Parish

Improved stand establishment of direct-seeded crops has usually involved seed treatment and/or seed covers. Planters have been evaluated for seed/plant spacing uniformity, singulation, furrow openers, and presswheel design; however, effects of presswheels and seed coverers on plant establishment have not been widely investigated. Five experiments were conducted in a fine sandy loam soil to determine effect of presswheels and seed coverers on emergence of direct-seeded cabbage and mustard. Seed were planted with Stanhay 870 seeder equipped with one of four presswheels and seed coverers. Presswheels included smooth, mesh, concave split, and flat split types. Seed coverers included standard drag, light drag, paired knives, and no coverer. Soil moisture at planting ranged from 8% to 19% in the top 5 cm of bed. Differences in plant counts taken 2 weeks after planting were minimal with any presswheel or seed coverer. Visual observation indicated the seed furrow was more completely closed with the knife coverer in high soil moisture conditions. All tests received at least 14 mm of precipitation within 6 days from planting, which may account for lack of differences in plant emergence.


Weed Science ◽  
1980 ◽  
Vol 28 (5) ◽  
pp. 534-539 ◽  
Author(s):  
W. A. Dortenzio ◽  
R. F. Norris

Loss in activity of foliar-applied methyl ester of diclofop {2-[4-(2,4-dichlorophenoxy)phenoxy] propanoic acid} occurred under low soil moisture conditions. A loss in control of yellow foxtail [Setaria lutescens(Weigel) Hubb.], wild oats (Avena fatuaL.), little-seed canarygrass (Phalaris minorRetz.), and barnyardgrass [Echinochloa crus-galli(L.) Beauv.], was observed under greenhouse and growth chamber conditions. When soil was maintained at 2 to 3% above wilting point as compared to near field capacity, herbicide activity was decreased by 15 to 50%. High soil moisture (at or above 67% of field capacity) for at least 2 to 4 days following treatment was needed to achieve maximum effectiveness of the herbicide. Daily furrow irrigations for a period of 10 days following treatment of barnyardgrass in the field resulted in highest activity as compared to that under single irrigation regimes within the 10-day period. The effect of low soil moisture was minimized by increased rates of herbicide application. Hoe-29152 {methyl-2-[4-(4-trifluoromethylphenoxy)phenoxy] propanoate} showed similar losses in activity associated with low soil moisture. No consistent changes in uptake or translocation of14C-labeled diclofop could be detected in association with altered soil moisture status.


Author(s):  
Tracy Rowlandson ◽  
Sarah Impera ◽  
Jonathon Belanger ◽  
Aaron A. Berg ◽  
Brenda Toth ◽  
...  

2003 ◽  
Vol 33 (1) ◽  
pp. 106-117 ◽  
Author(s):  
Samuel S Chan ◽  
Steven R Radosevich ◽  
Amy T Grotta

We examined growth and biomass allocation of individual Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and red alder (Alnus rubra Bong.) seedlings grown for 3 years under contrasting combinations of light and water. Alder growth was always greater than Douglas-fir. Full sunlight and soil moisture at field capacity caused large differences in size between the two species. With limited light and water, differences were smaller. Under full light and limited water, Douglas-fir allocated a high portion of its biomass to roots, whereas red alder allocated a high percentage to aboveground biomass components. Under light and water resource-limiting situations, red alder allocated more mass to stem, whereas Douglas-fir allocated more to roots. Red alder growth responded negatively to water limitation, whereas Douglas-fir did not. Red alder exhibited greater foliage plasticity to light. Species differences in size and allocation in response to resource availability may determine pathways by which Douglas-fir and red alder interact in a mixed community. Our findings support the hypothesis that the potential of species to use growth-limiting resources is an indicator of competitive ability. We suggest that red alder and Douglas-fir can co-exist under conditions of full light and limiting soil moisture availability. Furthermore, when contrasted with red alder, Douglas-fir's relatively greater tolerances to low light allow it to better persist in the understory. Red alder's rapid early growth and competitive ability will be superior under full light and nonlimiting soil moisture conditions.


Sugar Tech ◽  
2013 ◽  
Vol 16 (2) ◽  
pp. 174-179 ◽  
Author(s):  
Vitor Paulo Vargas ◽  
Heitor Cantarella ◽  
Acácio Agostinho Martins ◽  
Johnny Rodrigues Soares ◽  
Janaína Braga do Carmo ◽  
...  

2013 ◽  
Vol 26 (7) ◽  
pp. 2379-2389 ◽  
Author(s):  
Benjamin R. Lintner ◽  
Pierre Gentine ◽  
Kirsten L. Findell ◽  
Fabio D’Andrea ◽  
Adam H. Sobel ◽  
...  

Abstract A process-based, semianalytic prototype model for understanding large-scale land–atmosphere coupling is developed here. The metric for quantifying the coupling is the sensitivity of precipitation P to soil moisture W, . For a range of prototype parameters typical of conditions found over tropical or summertime continents, the sensitivity measure exhibits a broad minimum at intermediate soil moisture values. This minimum is attributed to a trade-off between evaporation (or evapotranspiration) E and large-scale moisture convergence across the range of soil moisture states. For water-limited, low soil moisture conditions, is dominated by evaporative sensitivity , reflecting high potential evaporation Ep arising from relatively warm surface conditions and a moisture-deficient atmospheric column under dry surface conditions. By contrast, under high soil moisture (or energy limited) conditions, becomes slightly negative as Ep decreases. However, because convergence and precipitation increase strongly with decreasing (drying) moisture advection, while soil moisture slowly saturates, is large. Variation of key parameters is shown to impact the magnitude of , for example, increasing the time scale for deep convective adjustment lowers at a given W, especially on the moist side of the profile where convergence dominates. While the prototype’s applicability for direct quantitative comparison with either observations or models is clearly limited, it nonetheless demonstrates how the complex interplay of surface turbulent and column radiative fluxes, deep convection, and horizontal and vertical moisture transport influences the coupling of the land surface and atmosphere that may be expected to occur in either more realistic models or observations.


2019 ◽  
Author(s):  
Matema L.E. Imakumbili ◽  
Ernest Semu ◽  
Johnson M.R. Semoka ◽  
Adebayo Abass ◽  
Geoffrey Mkamilo

AbstractVarieties and soil moisture content are the two agronomic factors mostly pointed out as influencers of cyanogenic glucoside production in cassava. The role of soil nutrient supply is however often overlooked or minimised, despite its known influence on cyanogenic glucoside production. A pot experiment was hence carried out to determine whether soil nutrient supply had an equal influence on cyanogenic glucoside production in cassava, as varieties and soil moisture content. The cassava varieties, Kiroba (a sweet cassava variety) and Salanga (a bitter cassava variety), were used in the experiment, together with three soil moisture treatments that respectively induced severe moisture stress, moderate moisture stress and no moisture stress (optimal soil moisture conditions where plants were kept well-watered). The soil nutrient treatments used depicted conditions of low (no fertiliser), moderate (25 N mg, 5 P mg, 25 K mg /kg) and high (25 N mg, 5 P mg, 25 K mg /kg) nutrient supply. A sole K treatment was also included (25 K mg/kg). Total hydrogen cyanide (HCN) levels in cassava leaves were used to indicate the effects of the three factors on cyanogenic glucoside production. The results of the study showed that nutrient supply had a significantly (p < 0.001) equal influence on cyanogenic glucoside production, as varieties (p < 0.001) and soil moisture content (p < 0.001). Cyanogenic glucoside production was however found to be differently influenced by soil moisture content (M) and nutrient supply (N) in both Salanga (M×N, p = 0.002) and Kiroba (M×N, p < 0.001). Leaf HCN levels of unfertilised Salanga and Kiroba were respectively increased by 1.8 times and 2.7 times their levels under optimal soil moisture conditions. Thus, under severe moisture stress, low soil fertility was found to have an increasing effect on leaf HCN levels in both varieties. A high supply of N, P and K, however also had an increasing effect on leaf HCN in both varieties regardless of soil moisture conditions. Leaf HCN levels in Salanga ranged from 95.5 mg/kg to 334.5 mg/kg and in Kiroba they ranged from 39.3 mg/kg to 161.5 mg/kg, on a fresh weight basis. The study managed to demonstrate that soil fertility had an equally important influence on cyanogenic glucoside production, just like varieties and soil moisture content. The study also showed that the effects of nutrient supply on cyanogenic glucoside production in various cassava varieties is dependent on changes in soil moisture content and vice versa.


1984 ◽  
Vol 62 (10) ◽  
pp. 2122-2127 ◽  
Author(s):  
Jess K. Zimmerman ◽  
I. Michael Weis

In a beach population of Xanthium strumarium, we assessed the effects of density, seedling emergence date, and soil moisture on seedling survivorship, plant growth, and fruit production. Seedling survival was largely density independent, while growth and fruit production declined significantly with increased density. Delayed seedling emergence resulted in significantly lowered survival but exhibited no significant effects on fruit production. Soil moisture was correlated positively with seedling survival, growth, and fruit production. Blowing sand was noted as an important cause of seedling mortality. Increased survival in areas of high soil moisture apparently resulted because of an absence of blowing sand in these areas. Consistent with a lack of density-dependent mortality, the density–yield relationship for the population had a slope near −1 and not −3/2. Hierarchy in fruit production among plants was least developed in areas of high plant density.


Author(s):  
N.A. Thomson

In a four year grazing trial with dairy cows the application of 5000 kg lime/ ha (applied in two applications of 2500 kg/ha in winter of the first two years) significantly increased annual pasture production in two of the four years and dairy production in one year. In three of the four years lime significantly increased pasture growth over summer/autumn with concurrent increases in milk production. In the last year of the trial lime had little effect on pasture growth but a relatively large increase in milkfat production resulted. A higher incidence of grass staggers was recorded on the limed farmlets in spring for each of the four years. In the second spring immediately following the second application of lime significant depressions in both pasture and plasma magnesium levels were recorded. By the third spring differences in plasma magnesium levels were negligible but small depressions in herbage magnesium resulting from lime continued to the end of the trial. Lime significantly raised soil pH, Ca and Mg levels but had no effect on either soil K or P. As pH levels of the unlimed paddocks were low (5.2-5.4) in each autumn and soil moisture levels were increased by liming, these factors may suggest possible causes for the seasonality of the pasture response to lime


Sign in / Sign up

Export Citation Format

Share Document