scholarly journals Plastome Diversity and Phylogenomic Relationships in Asteraceae

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2699
Author(s):  
Joan Pere Pascual-Díaz ◽  
Sònia Garcia ◽  
Daniel Vitales

Plastid genomes are in general highly conserved given their slow evolutionary rate, and thus large changes in their structure are unusual. However, when specific rearrangements are present, they are often phylogenetically informative. Asteraceae is a highly diverse family whose evolution is long driven by polyploidy (up to 48x) and hybridization, both processes usually complicating systematic inferences. In this study, we generated one of the most comprehensive plastome-based phylogenies of family Asteraceae, providing information about the structure, genetic diversity and repeat composition of these sequences. By comparing the whole-plastome sequences obtained, we confirmed the double inversion located in the long single-copy region, for most of the species analyzed (with the exception of basal tribes), a well-known feature for Asteraceae plastomes. We also showed that genome size, gene order and gene content are highly conserved along the family. However, species representative of the basal subfamily Barnadesioideae—as well as in the sister family Calyceraceae—lack the pseudogene rps19 located in one inverted repeat. The phylogenomic analysis conducted here, based on 63 protein-coding genes, 30 transfer RNA genes and 21 ribosomal RNA genes from 36 species of Asteraceae, were overall consistent with the general consensus for the family’s phylogeny while resolving the position of tribe Senecioneae and revealing some incongruences at tribe level between reconstructions based on nuclear and plastid DNA data.

Author(s):  
Joan Pere Pascual-Díaz ◽  
Sònia Garcia ◽  
Daniel Vitales

Plastid genomes are in general highly conserved given their slow evolutionary rate, thus large changes in their structure are unusual. However, when specific rearrangements are present, they are often phylogenetically informative. Asteraceae is a highly diverse family whose evolution is long driven by polyploidy (up to 48x) and hybridisation, both processes usually complicating systematic inferences. In this study, we have generated one of the most comprehensive plastome-based phylogenies of family Asteraceae, providing information about the structure, genetic diversity, and repeat composition of these sequences. By comparing the whole plastome sequences obtained, we confirmed the double inversion located in the long single copy region, for most of the species analysed (with the exception of basal tribes), a well-known feature for Asteraceae plastomes. We also show that genome size, gene order and gene content are highly conserved along the family. However, species representative of the basal subfamily Barnadesioideae -as well as in the sister family Calyceraceae - are lacking the pseudogene rps19 located in one inverted repeat. The phylogenomic analysis conducted here, based on 63 protein-coding genes, 30 transfer RNA genes and 21 ribosomal RNA genes from 36 species of Asteraceae, are overall consistent with the general consensus for the family’s phylogeny, while resolving the position of tribe Senecioneae and revealing some incongruences at tribe level between reconstructions based on nuclear and plastid DNA data.


2021 ◽  
Vol 46 (1) ◽  
pp. 162-174
Author(s):  
Ming-Hui Yan ◽  
Chun-Yang Li ◽  
Peter W. Fritsch ◽  
Jie Cai ◽  
Heng-Chang Wang

Abstract—The phylogenetic relationships among 11 out of the 12 genera of the angiosperm family Styracaceae have been largely resolved with DNA sequence data based on all protein-coding genes of the plastome. The only genus that has not been phylogenomically investigated in the family with molecular data is the monotypic genus Parastyrax, which is extremely rare in the wild and difficult to collect. To complete the sampling of the genera comprising the Styracaceae, examine the plastome composition of Parastyrax, and further explore the phylogenetic relationships of the entire family, we sequenced the whole plastome of P. lacei and incorporated it into the Styracaceae dataset for phylogenetic analysis. Similar to most others in the family, the plastome is 158189 bp in length and contains a large single-copy region of 88085 bp and a small single-copy region of 18540 bp separated by two inverted-repeat regions of 25781 bp each. A total of 113 genes was predicted, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic relationships among all 12 genera of the family were constructed with 79 protein-coding genes. Consistent with a previous study, Styrax, Huodendron, and a clade of Alniphyllum + Bruinsmia were successively sister to the remainder of the family. Parastyrax was strongly supported as sister to an internal clade comprising seven other genera of the family, whereas Halesia and Pterostyrax were both recovered as polyphyletic, as in prior studies. However, when we employed either the whole plastome or the large- or small-single copy regions as datasets, Pterostyrax was resolved as monophyletic with 100% support, consistent with expectations based on morphology and indicating that non-coding regions of the Styracaceae plastome contain informative phylogenetic signal. Conversely Halesia was still resolved as polyphyletic but with novel strong support.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 181
Author(s):  
Zhenya Li ◽  
Xinxin Li ◽  
Nan Song ◽  
Huiji Tang ◽  
Xinming Yin

Carabidae are one of the most species-rich families of beetles, comprising more than 40,000 described species worldwide. Forty-three complete or partial mitochondrial genomes (mitogenomes) from this family have been published in GenBank to date. In this study, we sequenced a nearly complete mitogenome of Amara aulica (Carabidae), using a next-generation sequencing method. This mitogenome was 16,646 bp in length, which encoded the typical 13 mitochondrial protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a putative control region. Combining with the published mitogenomes of Carabidae and five outgroup species from Trachypachidae, Gyrinidae and Dytiscidae, we performed phylogenetic estimates under maximum likelihood and Bayesian inference criteria to investigate the phylogenetic relationships of carabid beetles. The results showed that the family Carabidae was a non-monophyletic assemblage. The subfamilies Cicindelinae, Elaphrinae, Carabinae, Trechinae and Harpalinae were recovered as monophyletic groups. Moreover, the clade (Trechinae + (Brachininae + Harpalinae)) was consistently recovered in all analyses.


2018 ◽  
Author(s):  
Weixue Mu ◽  
Ting Yang ◽  
Xin Liu

AbstractBrassicales is a diverse angiosperm order with about 4,700 recognized species. Here, we assembled and described the complete plastid genomes from four species of Brassicales: Capparis urophylla F.Chun (Capparaceae), Carica papaya L. (Caricaceae), Cleome rutidosperma DC. (Cleomaceae), and Moringa oleifera Lam. (Moringaceae), including two plastid genomes newly assembled for two families (Capparaceae and Moringaceae). The four plastid genomes are 159,680 base pairs on average in length and encode 78 protein-coding genes. The genomes each contains a typical structure of a Large Single-Copy (LSC) region and a Small Single-Copy (SSC) region separated by two Inverted Repeat (IR) regions. We performed the maximum-likelihood (ML) phylogenetic analysis using three different data sets of 66 protein-coding genes (ntAll, ntNo3rd and AA). Our phylogenetic results from different dataset are congruent, and are consistent with previous phylogenetic studies of Brassiales.


2016 ◽  
Author(s):  
Congrui Sun ◽  
Jie Li ◽  
Xiaogang Dai ◽  
Yingnan Chen

By screening sequence reads from the chloroplast (cp) genome of S. suchowensis that generated by the next generation sequencing platforms, we built the complete circular pseudomolecule for its cp genome. This pseudomolecule is 155,508 bp in length, which has a typical quadripartite structure containing two single copy regions, a large single copy region (LSC 84,385 bp), and a small single copy region (SSC 16,209 bp) separated by inverted repeat regions (IRs 27,457 bp). Gene annotation revealed that the cp genome of S. suchowensis encoded 119 unique genes, including 4 ribosome RNA genes, 30 transfer RNA genes, 82 protein-coding genes and 3 pseudogenes. Analyzing the repetitive sequences detected 15 tandem repeats, 16 forward repeats and 5 palindromic repeats. In addition, a total of 188 perfect microsatellites were detected, which were characterized as A/T predominance in nucleotide compositions. Significant shifting of the IR/SSC boundaries was revealed by comparing this cp genome with that of other rosids plants. We also built phylogenetic trees to demonstrate the phylogenetic position of S. suchowensis in Rosidae, with 66 orthologous protein-coding genes presented in the cp genomes of 32 species. By sequencing 30 amplicons based on the pseudomolecule, experimental verification achieved accuracy up to 99.84% for the cp genome assembly of S. suchowensis. In conclusion, this study built a high quality pseudomolecule for the cp genome of S. suchowensis, which is a useful resource for facilitating the development of this shrub willow into a more productive bioenergy crop.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruoran Li ◽  
Xuli Jia ◽  
Jing Zhang ◽  
Shangang Jia ◽  
Tao Liu ◽  
...  

Sargassum is one of the most important genera of the family Sargassaceae in brown algae and is used to produce carrageenan, mannitol, iodine, and other economic substances. Here, seven complete plastid genomes of Sargassum ilicifolium var. conduplicatum, S. graminifolium, S. phyllocystum, S. muticum, S. feldmannii, S. mcclurei, and S. henslowianum were assembled using next-generation sequencing. The sizes of the seven circular genomes ranged from 124,258 to 124,563 bp, with two inverted regions and the same set of plastid genes, including 139 protein-coding genes (PCGs), 28 transfer (t)RNAs, and 6 ribosomal (r)RNAs. Compared with the other five available plastid genomes of Fucales, 136 PCGs were conserved, with two common ones shared with Coccophora langsdorfii, and one with S. fusiforme and S. horneri. The co-linear analysis identified two inversions of trnC(gca) and trnN(gtt) in ten Sargassum species, against S. horneri and C. langsdorfii. The phylogenetic analysis based on the plastid genomes of 55 brown algae (Phaeophyceae) showed four clades, whose ancient ancestor lived around 201.42 million years ago (Mya), and the internal evolutionary branches in Fucales started to be formed 92.52 Mya, while Sargassum species were divided into two subclades 14.33 Mya. Our novel plastid genomes provided evidence for the speciation of brown algae and plastid genomic evolution events.


ZooKeys ◽  
2020 ◽  
Vol 945 ◽  
pp. 1-16
Author(s):  
Yuan-An Wu ◽  
Jin-Wei Gao ◽  
Xiao-Fei Cheng ◽  
Min Xie ◽  
Xi-Ping Yuan ◽  
...  

Azygia hwangtsiyui (Trematoda, Azygiidae), a neglected parasite of predatory fishes, is little-known in terms of its molecular epidemiology, population ecology and phylogenetic study. In the present study, the complete mitochondrial genome of A. hwangtsiyui was sequenced and characterized: it is a 13,973 bp circular DNA molecule and encodes 36 genes (12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes) as well as two non-coding regions. The A+T content of the A. hwangtsiyui mitogenome is 59.6% and displays a remarkable bias in nucleotide composition with a negative AT skew (–0.437) and a positive GC skew (0.408). Phylogenetic analysis based on concatenated amino acid sequences of twelve protein-coding genes reveals that A. hwangtsiyui is placed in a separate clade, suggesting that it has no close relationship with any other trematode family. This is the first characterization of the A. hwangtsiyui mitogenome, and the first reported mitogenome of the family Azygiidae. These novel datasets of the A. hwangtsiyui mt genome represent a meaningful resource for the development of mitochondrial markers for the identification, diagnostics, taxonomy, homology and phylogenetic relationships of trematodes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yu Nie ◽  
Yi-Tian Fu ◽  
Yu Zhang ◽  
Yuan-Ping Deng ◽  
Wei Wang ◽  
...  

Abstract Background Fragmented mitochondrial (mt) genomes and extensive mt gene rearrangements have been frequently reported from parasitic lice (Insecta: Phthiraptera). However, relatively little is known about the mt genomes from the family Philopteridae, the most species-rich family within the suborder Ischnocera. Methods Herein, we use next-generation sequencing to decode the mt genome of Falcolipeurus suturalis and compare it with the mt genome of F. quadripustulatus. Phylogenetic relationships within the family Philopteridae were inferred from the concatenated 13 protein-coding genes of the two Falcolipeurus lice and members of the family Philopteridae using Bayesian inference (BI) and maximum likelihood (ML) methods. Results The complete mt genome of F. suturalis is a circular, double-stranded DNA molecule 16,659 bp in size that contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and three non-coding regions. The gene order of the F. suturalis mt genome is rearranged relative to that of F. quadripustulatus, and is radically different from both other louse species and the putative ancestral insect. Phylogenetic analyses revealed clear genetic distinctiveness between F. suturalis and F. quadripustulatus (Bayesian posterior probabilities = 1.0 and bootstrapping frequencies = 100), and that the genus Falcolipeurus is sister to the genus Ibidoecus (Bayesian posterior probabilities = 1.0 and bootstrapping frequencies = 100). Conclusions These datasets help to better understand gene rearrangements in lice and the phylogenetic position of Falcolipeurus and provide useful genetic markers for systematic studies of bird lice. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document