scholarly journals Optimization of Photosynthetic Photon Flux Density and Light Quality for Increasing Radiation-Use Efficiency in Dwarf Tomato under LED Light at the Vegetative Growth Stage

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 121
Author(s):  
Xinglin Ke ◽  
Hideo Yoshida ◽  
Shoko Hikosaka ◽  
Eiji Goto

Dwarf tomatoes are advantageous when cultivated in a plant factory with artificial light because they can grow well in a small volume. However, few studies have been reported on cultivation in a controlled environment for improving productivity. We performed two experiments to investigate the effects of photosynthetic photon flux density (PPFD; 300, 500, and 700 μmol m−2 s−1) with white light and light quality (white, R3B1 (red:blue = 3:1), and R9B1) with a PPFD of 300 μmol m−2 s−1 on plant growth and radiation-use efficiency (RUE) of a dwarf tomato cultivar (‘Micro-Tom’) at the vegetative growth stage. The results clearly demonstrated that higher PPFD leads to higher dry mass and lower specific leaf area, but it does not affect the stem length. Furthermore, high PPFD increased the photosynthetic rate (Pn) of individual leaves but decreased RUE. A higher blue light proportion inhibited dry mass production with the same intercepted light because the leaves under high blue light proportion had low Pn and photosynthetic light-use efficiency. In conclusion, 300 μmol m−2 s−1 PPFD and R9B1 are the recommended proper PPFD and light quality, respectively, for ‘Micro-Tom’ cultivation at the vegetative growth stage to increase the RUE.

2007 ◽  
Vol 4 (5) ◽  
pp. 791-802 ◽  
Author(s):  
J. S. Pereira ◽  
J. A. Mateus ◽  
L. M. Aires ◽  
G. Pita ◽  
C. Pio ◽  
...  

Abstract. Droughts reduce gross primary production (GPP) and ecosystem respiration (Reco), contributing to most of the inter-annual variability in terrestrial carbon sequestration. In seasonally dry climates (Mediterranean), droughts result from reductions in annual rainfall and changes in rain seasonality. We compared carbon fluxes measured by the eddy covariance technique in three contrasting ecosystems in southern Portugal: an evergreen oak woodland (savannah-like) with ca.~21% tree crown cover, a grassland dominated by herbaceous annuals and a coppiced short-rotation eucalyptus plantation. During the experimental period (2003–2006) the eucalyptus plantation was always the strongest sink for carbon: net ecosystem exchange rate (NEE) between −861 and −399 g C m−2 year−1. The oak woodland and the grassland were much weaker sinks for carbon: NEE varied in the oak woodland between −140 and −28 g C m−2 year−1 and in the grassland between −190 and +49 g C m−2 year−1. The eucalyptus stand had higher GPP and a lower proportion of GPP spent in respiration than the other systems. The higher GPP resulted from high leaf area duration (LAD), as a surrogate for the photosynthetic photon flux density absorbed by the canopy. The eucalyptus had also higher rain use efficiency (GPP per unit of rain volume) and light use efficiency (the daily GPP per unit incident photosynthetic photon flux density) than the other two ecosystems. The effects of a severe drought could be evaluated during the hydrological-year (i.e., from October to September) of 2004–2005. Between October 2004 and June 2005 the precipitation was only 40% of the long-term average. In 2004–2005 all ecosystems had GPP lower than in wetter years and carbon sequestration was strongly restricted (less negative NEE). The grassland was a net source of carbon dioxide (+49 g C m−2 year−1). In the oak woodland a large proportion of GPP resulted from carbon assimilated by its annual vegetation component, which was strongly affected by the shortage of rain in winter. Overall, severe drought affected more GPP than Reco leading to the deterioration of NEE. Although the rain-use efficiency of the eucalyptus plantation increased in the dry year, this was not the case of evergreen oak woodland, which rain-use efficiency was not influenced by drought. Recovery after drought alleviation, i.e., beginning with heavy rain in October 2005, was fully accomplished in 2006 in the oak woodland and grassland, but slow in the eucalyptus plantation.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 397 ◽  
Author(s):  
Virupax C. Baligar ◽  
Marshall K. Elson ◽  
Alex-Alan F. Almeida ◽  
Quintino R. de Araujo ◽  
Dario Ahnert ◽  
...  

Cacao (Theobroma cacao L.) was grown as an understory tree in agroforestry systems where it received inadequate to adequate levels of photosynthetic photon flux density (PPFD). As atmospheric carbon dioxide steadily increased, it was unclear what impact this would have on cacao growth and development at low PPFD. This research evaluated the effects of ambient and elevated levels carbon dioxide under inadequate to adequate levels of PPFD on growth, physiological and nutrient use efficiency traits of seven genetically contrasting juvenile cacao genotypes. Growth parameters (total and root dry weight, root length, stem height, leaf area, relative growth rate and net assimilation rates increased, and specific leaf area decreased significantly in response to increasing carbon dioxide and PPFD. Increasing carbon dioxide and PPFD levels significantly increased net photosynthesis and water-use efficiency traits but significantly reduced stomatal conductance and transpiration. With few exceptions, increasing carbon dioxide and PPFD reduced macro–micro nutrient concentrations but increased uptake, influx, transport and nutrient use efficiency in all cacao genotypes. Irrespective of levels of carbon dioxide and PPFD, intraspecific differences were observed for growth, physiology and nutrient use efficiency of cacao genotypes.


2003 ◽  
Vol 128 (3) ◽  
pp. 291-296 ◽  
Author(s):  
J.G. Carew ◽  
K. Mahmood ◽  
J. Darby ◽  
P. Hadley ◽  
N.H. Battey

The effects of temperature, photosynthetic photon flux density (PPFD) and photoperiod on vegetative growth and flowering of the raspberry (Rubus idaeus L.) `Autumn Bliss' were investigated. Increased temperature resulted in an increased rate of vegetative growth and a greater rate of progress to flowering. Optimum temperatures lay in the low to mid 20°C range. Above this the rate of plant development declined. Increased PPFD also advanced flowering. While photoperiod did not significantly affect the rate of vegetative growth, flowering occurred earliest at intermediate photoperiods and was delayed by extreme photoperiods. These responses suggest that there is potential for adjusting cropping times of raspberry grown under protection by manipulating the environment, especially temperature.


2016 ◽  
Vol 44 (2) ◽  
pp. 393-398
Author(s):  
Chang-Chang CHEN ◽  
Kuan-Hung LIN ◽  
Meng-Yuan HUANG ◽  
Wen-Dar HUANG ◽  
Chi-Ming YANG

The objective of this study was to investigate the dynamics of chlorophyll (Chl), biosynthetic intermediates (protoporphyrin IX, magnesium protoporphyrin IX, and protochlorophyllide), degradation intermediates [chlorophyllide (Chlide), pheophytin (Phe), and pheophorbide (Pho)], and carotenoids (Car) in leaves of rice seedlings. Two rice varieties, 'Taichung Shen 10' ('TCS10') and 'IR1552', were grown under different light quality conditions controlled by light emitting diodes (LED). Lighting treatments for rice seedlings were included by red (R), blue (B), green (G), and red + blue (RB), with fluorescent lighting (FL) as the control and photosynthetic photon flux density being set at 105 µmol m-2 s-1. The results show that lower levels of Chl and Car in leaves were detected under G lighting, and light quality did not mediate porphyrins in biosynthetic pathways. Rice seedling leaves took Chl→Phe→Pho and Chl→Chlide→Pho as the major and minor degradation routes, respectively. Furthermore, higher Phe/Chlide ratios were observed under G and FL lighting conditions, indicating that green-enriched environments can up-regulate the minor degradation route in leaves.


2019 ◽  
Vol 11 (8) ◽  
pp. 932
Author(s):  
Megumi Yamashita ◽  
Mitsunori Yoshimura

A knowledge of photosynthetic photon flux density (PPFD: μmol m−2 s−1) is crucial for understanding plant physiological processes in photosynthesis. The diffuse component of the global PPFD on a short timescale is required for the accurate modeling of photosynthesis. However, because the PPFD is difficult to determine, it is generally estimated from incident solar radiation (SR: W m−2), which is routinely observed worldwide. To estimate the PPFD from the SR, photosynthetically active radiation (PAR: W m−2) is separated from the SR using the PAR fraction (PF; PAR/SR: unitless), and the PAR is then converted into the PPFD using the quanta-to-energy ratio (Q/E: μmol J−1). In this procedure, PF and Q/E are considered constant values; however, it was reported recently that PF and Q/E vary under different sky conditions. Moreover, the diffuse ratio (DR) is needed to distinguish the diffuse component in the global PAR, and it is known that the DR varies depending on sky conditions. Ground-based whole-sky images can be used for sky-condition monitoring, instead of human-eye interpretation. This study developed a methodology for estimating the global and diffuse PPFD using whole-sky images. Sky-condition factors were derived through whole-sky image processing, and the effects of these factors on the PF, the Q/E of global and diffuse PAR, and the DR were examined. We estimated the global and diffuse PPFD with instantaneous values using the sky-condition factors under various sky conditions, based on which the detailed effects of the sky-condition factors on PF, Q/E, and DR were clarified. The results of the PPFD estimations had small bias errors of approximately +0.3% and +3.8% and relative root mean square errors of approximately 27% and 20% for the global and diffuse PPFD, respectively.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 143
Author(s):  
Neringa Rasiukevičiūtė ◽  
Aušra Brazaitytė ◽  
Viktorija Vaštakaitė-Kairienė ◽  
Alma Valiuškaitė

The study aimed to evaluate the effect of different photon flux density (PFD) and light-emitting diodes (LED) wavelengths on strawberry Colletotrichum acutatum growth characteristics. The C. acutatum growth characteristics under the blue 450 nm (B), green 530 nm (G), red 660 nm (R), far-red 735 nm (FR), and white 5700 K (W) LEDs at PFD 50, 100 and 200 μmol m−2 s−1 were evaluated. The effect on C. acutatum mycelial growth evaluated by daily measuring until five days after inoculation (DAI). The presence of conidia and size (width and length) evaluated after 5 DAI. The results showed that the highest inhibition of fungus growth was achieved after 1 DAI under B and G at 50 μmol m−2 s−1 PFD. Additionally, after 1–4 DAI under B at 200 μmol m−2 s−1 PFD. The lowest conidia width was under FR at 50 μmol m−2 s−1 PFD and length under FR at 100 μmol m−2 s−1 PFD. Various LED light wavelengths influenced differences in C. acutatum colonies color. In conclusion, different photosynthetic photon flux densities and wavelengths influence C. acutatum growth characteristics. The changes in C. acutatum morphological and phenotypical characteristics could be related to its ability to spread and infect plant tissues. This study’s findings could potentially help to manage C. acutatum by LEDs in controlled environment conditions.


Sign in / Sign up

Export Citation Format

Share Document