scholarly journals Cytoplasm Types Affect DNA Methylation among Different Cytoplasmic Male Sterility Lines and Their Maintainer Line in Soybean (Glycine max L.)

Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 385
Author(s):  
Chunjing Lin ◽  
Bao Peng ◽  
Yongkuan Li ◽  
Pengnian Wang ◽  
Guolong Zhao ◽  
...  

Cytoplasmic male sterility (CMS) lines and their maintainer line have the same nucleus but different cytoplasm types. We used three soybean (Glycine max L.) CMS lines, JLCMS9A, JLCMSZ9A, and JLCMSPI9A, and their maintainer line, JLCMS9B, to explore whether methylation levels differed in their nuclei. Whole-genome bisulfite sequencing of these four lines was performed. The results show that the cytosine methylation level in the maintainer line was lower than in the CMS lines. Compared with JLCMS9B, the Gene Ontology (GO) enrichment analysis of DMR (differentially methylated region, DMR)-related genes of JLCMS9A revealed that their different 5-methylcytosine backgrounds were enriched in molecular function, whereas JLCMSZ9A and JLCMSPI9A were enriched in biological process and cellular component. The Kyoto Encyclopedia of Genes and Genome (KEGG) analysis of DMR-related genes and different methylated promoter regions in different cytosine contexts, hypomethylation or hypermethylation, showed that the numbers of DMR-related genes and promoter regions were clearly different. According to the DNA methylation and genetic distances separately, JLCMS9A clustered with JLCMS9B, and JLCMSPI9A with JLCMSZ9A. Thus, the effects of different cytoplasm types on DNA methylation were significantly different. This may be related to their genetic distances revealed by re-sequencing these lines. The detected DMR-related genes and pathways that are probably associated with CMS are also discussed.

2018 ◽  
Vol 17 (5) ◽  
pp. 1085-1092 ◽  
Author(s):  
Jing-yong ZHANG ◽  
Huan SUN ◽  
Li-mei ZHAO ◽  
Chun-bao ZHANG ◽  
Hao YAN ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 920
Author(s):  
Ling Cheng ◽  
Wanling Min ◽  
Man Li ◽  
Lili Zhou ◽  
Chuan-Chih Hsu ◽  
...  

Soybean (Glycine max L.) is a major crop providing important source for protein and oil for human life. Low phosphate (LP) availability is a critical limiting factor affecting soybean production. Soybean plants develop a series of strategies to adapt to phosphate (Pi) limitation condition. However, the underlying molecular mechanisms responsible for LP stress response remain largely unknown. Here, we performed a label-free quantification (LFQ) analysis of soybean leaves grown under low and high phosphate conditions. We identified 267 induced and 440 reduced differential proteins from phosphate-starved leaves. Almost a quarter of the LP decreased proteins are involved in translation processes, while the LP increased proteins are accumulated in chlorophyll biosynthetic and carbon metabolic processes. Among these induced proteins, an enolase protein, GmENO2a was found to be mostly induced protein. On the transcriptional level, GmENO2a and GmENO2b, but not GmENO2c or GmENO2d, were dramatically induced by phosphate starvation. Among 14 enolase genes, only GmENO2a and GmENO2b genes contain the P1BS motif in their promoter regions. Furthermore, GmENO2b was specifically induced in the GmPHR31 overexpressing soybean plants. Our findings provide molecular insights into how soybean plants tune basic carbon metabolic pathway to adapt to Pi deprivation through the ENO2 enzymes.


2020 ◽  
Author(s):  
Yanping Tan ◽  
Tong Chen ◽  
Ze Tian ◽  
Jiayang Li ◽  
Xuequn Liu ◽  
...  

Abstract The identification and development of new cytoplasmic male sterility (CMS) lines in higher plants is important for the preservation of grain security and the prevention of homogenization of hybrid rice. Molecular markers assisted selection (MAS) based on CMS-associated genes or mitochondrial-specific chimeric sequences are important for rapid and effective breeding of new CMS lines and hybrids. In our study, the distribution and allele variation of orfH79 and orf290 genes were characterized from 273 wild and cultivated rice in the AA genome species. Based on the alignment of nucleotide and amino acid sequences, four accessions with orfH79 and three accessions with orf290 were screened. Four novel CMS lines carrying orfH79 haplotypes and three novel CMS lines carrying orf290 haplotypes were then developed using multiple backcross generations with a maintainer line under MAS. The breeding process used in our study provides an efficient and feasible approach for selecting new CMS lines. CMS lines selected in our study are important for enriching rice germplasm resources and guaranteeing rice breeding programs.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shi-Fei Sang ◽  
De-Sheng Mei ◽  
Jia Liu ◽  
Qamar U. Zaman ◽  
Hai-Yan Zhang ◽  
...  

Abstract Background Nsa cytoplasmic male sterility (CMS) is a novel alloplasmic male sterility system derived from somatic hybridization between Brassica napus and Sinapis arvensis. Identification of the CMS-associated gene is a prerequisite for a better understanding of the origin and molecular mechanism of this CMS. With the development of genome sequencing technology, organelle genomes of Nsa CMS line and its maintainer line were sequenced by pyro-sequencing technology, and comparative analysis of the organelle genomes was carried out to characterize the organelle genome composition of Nsa CMS as well as to identify the candidate Nsa CMS-associated genes. Results Nsa CMS mitochondrial genome showed a higher collinearity with that of S. arvensis than B. napus, indicating that Nsa CMS mitochondrial genome was mainly derived from S. arvensis. However, mitochondrial genome recombination of parental lines was clearly detected. In contrast, the chloroplast genome of Nsa CMS was highly collinear with its B. napus parent, without any evidence of recombination of the two parental chloroplast genomes or integration from S. arvensis. There were 16 open reading frames (ORFs) specifically existed in Nsa CMS mitochondrial genome, which could not be identified in the maintainer line. Among them, three ORFs (orf224, orf309, orf346) possessing chimeric and transmembrane structure are most likely to be the candidate CMS genes. Sequences of all three candidate CMS genes in Nsa CMS line were found to be 100% identical with those from S. arvensis mitochondrial genome. Phylogenetic and homologous analysis showed that all the mitochondrial genes were highly conserved during evolution. Conclusions Nsa CMS contains a recombined mitochondrial genome of its two parental species with the majority form S. arvensis. Three candidate Nsa CMS genes were identified and proven to be derived from S. arvensis other than recombination of its two parental species. Further functional study of the candidate genes will help to identify the gene responsible for the CMS and the underlying molecular mechanism.


2020 ◽  
Vol 154 ◽  
pp. 112622
Author(s):  
Xiangjun Kong ◽  
Aziz Khan ◽  
Bin Li ◽  
Jie Zheng ◽  
Farman Ullah Dawar ◽  
...  

2018 ◽  
Vol 19 (9) ◽  
pp. 2689 ◽  
Author(s):  
Zhixin Wang ◽  
Xiangping Wu ◽  
Zengxiang Wu ◽  
Hong An ◽  
Bin Yi ◽  
...  

DNA methylation is an essential epigenetic modification that dynamically regulates gene expression during plant development. However, few studies have determined the DNA methylation profiles of male-sterile rapeseed. Here, we conducted a global comparison of DNA methylation patterns between the rapeseed genic male sterile line 7365A and its near-isogenic fertile line 7365B by whole-genome bisulfite sequencing (WGBS). Profiling of the genome-wide DNA methylation showed that the methylation level in floral buds was lower than that in leaves and roots. Besides, a total of 410 differentially methylated region-associated genes (DMGs) were identified in 7365A relative to 7365B. Traditional bisulfite sequencing polymerase chain reaction (PCR) was performed to validate the WGBS data. Eleven DMGs were found to be involved in anther and pollen development, which were analyzed by quantitative PCR. In particular, Bnams4 was hypo-methylated in 7365A, and its expression was up-regulated, which might affect other DMGs and thus control the male sterility. This study provided genome-wide DNA methylation profiles of floral buds and important clues for revealing the molecular mechanism of genic male sterility in rapeseed.


Sign in / Sign up

Export Citation Format

Share Document