scholarly journals Normal Cyclic Variation in CO2 Concentration in Indoor Chambers Decreases Leaf Gas Exchange and Plant Growth

Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 663
Author(s):  
James Bunce

Attempts to identify crop genetic material with larger growth stimulation at projected elevated atmospheric CO2 concentrations are becoming more common. The probability of reductions in photosynthesis and yield caused by short-term variation in CO2 concentration within elevated CO2 treatments in the free-air CO2 enrichment plots raises the question of whether similar effects occur in glasshouse or indoor chamber experiments. These experiments were designed to test whether even the normal, modest, cyclic variation in CO2 concentration typical of indoor exposure systems have persistent impacts on photosynthesis and growth, and to explore mechanisms underlying the responses observed. Wheat, cotton, soybeans, and rice were grown from seed in indoor chambers at a mean CO2 concentration of 560 μmol mol−1, with “triangular” cyclic variation with standard deviations of either 4.5 or 18.0 μmol mol−1 measured with 0.1 s sampling periods with an open path analyzer. Photosynthesis, stomatal conductance, and above ground biomass at 20 to 23 days were reduced in all four species by the larger variation in CO2 concentration. Tests of rates of stomatal opening and closing with step changes in light and CO2, and tests of responses to square-wave cycling of CO2 were also conducted on individual leaves of these and three other species, using a leaf gas exchange system. Reduced stomatal conductance due to larger amplitude cycling of CO2 during growth occurred even in soybeans and rice, which had equal rates of opening and closing in response to step changes in CO2. The gas exchange results further indicated that reduced mean stomatal conductance was not the only cause of reduced photosynthesis in variable CO2 conditions.

2020 ◽  
Author(s):  
Wellington L Almeida ◽  
Rodrigo T Ávila ◽  
Junior P Pérez-Molina ◽  
Marcela L Barbosa ◽  
Dinorah M S Marçal ◽  
...  

Abstract The overall coordination between gas exchanges and plant hydraulics may be affected by soil water availability and source-to-sink relationships. Here we evaluated how branch growth and mortality, leaf gas exchange and metabolism are affected in coffee (Coffea arabica L.) trees by drought and fruiting. Field-grown plants were irrigated or not, and maintained with full or no fruit load. Under mild water deficit, irrigation per se did not significantly impact growth but markedly reduced branch mortality in fruiting trees, despite similar leaf assimilate pools and water status. Fruiting increased net photosynthetic rate in parallel with an enhanced stomatal conductance, particularly in irrigated plants. Mesophyll conductance and maximum RuBisCO carboxylation rate remained unchanged across treatments. The increased stomatal conductance in fruiting trees over nonfruiting ones was unrelated to internal CO2 concentration, foliar abscisic acid (ABA) levels or differential ABA sensitivity. However, stomatal conductance was associated with higher stomatal density, lower stomatal sensitivity to vapor pressure deficit, and higher leaf hydraulic conductance and capacitance. Increased leaf transpiration rate in fruiting trees was supported by coordinated alterations in plant hydraulics, which explained the maintenance of plant water status. Finally, by preventing branch mortality, irrigation can mitigate biennial production fluctuations and improve the sustainability of coffee plantations.


2010 ◽  
Vol 113-116 ◽  
pp. 14-17
Author(s):  
Meng Hu ◽  
Shao Zhong Kang ◽  
Tai Sheng Du ◽  
Ling Tong

A reflection function was established, based on leaf gas exchange process and tested with experimental data of eight kinds of plants, i.e. tomato, muskmelon, capsicum, maize, grape, onion, Haloxylon Ammodendron Bunge and Caragana Karshiskii Kom, with multifarious biological characteristic, water and growing status. The function indicated that the leaf stomatal conductance could be linearly reflected by the ratio of humidity and CO2 concentration at leaf surface, and the behaviour of its slope could be recognized as an indicator of leaf gas exchange efficiency, which had a negative relationship with leaf water use efficiency (WUE). The results maybe increase our understanding of potential influences of leaf stomatal conductance on photosynthetic and transpiration gas exchange and leaf WUE.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 540a-540
Author(s):  
K.J. Prevete ◽  
R.T. Fernandez

Three species of herbaceous perennials were tested on their ability to withstand and recover from drought stress periods of 2, 4, and 6 days. Eupatorium rugosum and Boltonia asteroides `Snowbank' were chosen because of their reported drought intolerance, while Rudbeckia triloba was chosen based on its reported drought tolerance. Drought stress began on 19 Sept. 1997. Plants were transplanted into the field the day following the end of each stress period. The effects of drought on transpiration rate, stomatal conductance, and net photosynthetic rate were measured during the stress and throughout recovery using an infrared gas analysis system. Leaf gas exchange measurements were taken through recovery until there were no differences between the stressed plants and the control plants. Transpiration, stomatal conductance, and photosynthesis of Rudbeckia and Boltonia were not affected until 4 days after the start of stress. Transpiration of Eupatorium decreased after 3 days of stress. After rewatering, leaf gas exchange of Boltonia and Rudbeckia returned to non-stressed levels quicker than Eupatorium. Growth measurements were taken every other day during stress, and then weekly following transplanting. Measurements were taken until a killing frost that occurred on 3 Nov. There were no differences in the growth between the stressed and non-stressed plants in any of the species. Plants will be monitored throughout the winter, spring, and summer to determine the effects of drought on overwintering capability and regrowth.


2020 ◽  
Vol 9 (5) ◽  
pp. e43952870
Author(s):  
Magnólia Martins Alves ◽  
Manoel Bandeira de Albuquerque ◽  
Renata Ranielly Pedroza Cruz ◽  
Mário Luiz Farias Cavalcanti

The availability of light is one of the factors that most limits the photosynthesis of juvenile trees in the understory of the forest. The study was carried out in the Mata do Pau-Ferro State Park, located in the city of Areia, PB. The objective of this study was to evaluate how gas exchanges occur in individuals of Psychotria colorata (Willd. Ex Roem & Schult.), Senna georgica Irwin & Barneby, Himatanthus phagedaenicus (Mart.) Woodson, Solanum swartzianum Roem. & Schult, Psychotria carthagenensis Jacq.e Psychotria hoffmannseggiana (Willd. ex Schult.) in the understory of a remnant of Mata Atlântica. The rate of photosynthesis (A), transpiration (E), stomatal conductance (Gs), internal CO2 concentration (Ci) leaf temperature-air temperature (°C), and internal carbon (Ci), instantaneous efficiency of water use (EUA) (A/E), Intrinsic efficiency of water use (EiUC) (A/Gs) and the intrinsic efficiency of carboxylation (ratio A/Ci). The rates of maximum photosynthesis (A), photosynthesis (E) and stomatal conductance (Gs) were shown to be influenced by the time of day, as there was no interference of external factors in the diurnal patterns of gas exchange, variations are due to endogenous factors, probably due to the circadian rhythm. The parameter of the gas exchange of sub-forest species responds differently, in the small variations in the luminosity levels of the forest understory


2010 ◽  
Vol 40 (6) ◽  
pp. 1290-1294 ◽  
Author(s):  
Inês Cechin ◽  
Natália Corniani ◽  
Terezinha de Fátima Fumis ◽  
Ana Catarina Cataneo

The effects of water stress and rehydration on leaf gas exchange characteristics along with changes in lipid peroxidation and pirogalol peroxidase (PG-POD) were studied in mature and in young leaves of sunflower (Helianthus annuus L.), which were grown in a greenhouse. Water stress reduced photosynthesis (Pn), stomatal conductance (g s), and transpiration (E) in both young and mature leaves. However, the amplitude of the reduction was dependent on leaf age. The intercellular CO2 concentration (Ci) was increased in mature leaves but it was not altered in young leaves. Instantaneous water use efficiency (WUE) in mature stressed leaves was reduced when compared to control leaves while in young stressed leaves it was maintained to the same level as the control. After 24h of rehydration, most of the parameters related to gas exchange recovered to the same level as the unstressed plants except gs and E in mature leaves. Water stress did not activated PG-POD independently of leaf age. However, after rehydration the enzyme activity was increased in mature leaves and remained to the same as the control in young leaves. Malondialdehyde (MDA) content was increased by water stress in both mature and young leaves. The results suggest that young leaves are more susceptible to water stress in terms of gas exchange characteristics than mature leaves although both went through oxidative estresse.


2011 ◽  
Vol 144 (1) ◽  
pp. 390-404 ◽  
Author(s):  
Gerard W. Wall ◽  
Richard L. Garcia ◽  
Frank Wechsung ◽  
Bruce A. Kimball

1988 ◽  
Vol 15 (2) ◽  
pp. 239 ◽  
Author(s):  
CB Osmond ◽  
V Oja ◽  
A Laisk

The consequences of acclimation from shade to sun and vice versa for regulated photosynthetic metabolism were examined in H. annuus. A rapid-response gas exchange system was used to assess changes in carboxylation-related parameters (mesophyll conductance, assimilatory charge and CO2 capacity) and to analyse oscillations in CO2 fixation following transfer to high CO2 concentration as a function of intercellular CO2 concentration and light intensity. Data showed a two- to threefold change in all carboxylation-related parameters during acclimation in either direction. Dynamic regulation of carboxylation, indicated by changes in oscillatory response as a function of CO2 concentration at light saturation, remained unchanged, consistent with concerted regulation of ribulose-1,5-bisphosphate carboxylase-oxygenase during acclimation. However, the light dependency of oscillations changed during acclimation from shade to sun, and the range of oscillation was closely tied to the maximum rate of steady-state photosynthesis at CO2 saturation. These data imply that changes in the light-absorbing and electron transport components of the photosynthetic apparatus underlie the shift in regulatory behaviour during acclimation.


2006 ◽  
Vol 86 (Special Issue) ◽  
pp. 1377-1381 ◽  
Author(s):  
J. P. Privé ◽  
L. Russell ◽  
A. LeBlanc

A field trial was conducted over two growing seasons in a Ginger Gold apple orchard in Bouctouche, New Brunswick, Canada to examine the impact of Surround (95% kaolin clay) on leaf gas exchange [net photosynthesis (Pn), stomatal conductance (gs), intercellular CO2 (Ci) and transpiration (E)]. In 2004, a greater rate of Pn and gs was achieved at the higher than at the lower frequency of Surround applications. This was particularly notable at leaf temperatures exceeding 35°C. In 2005, no significant (P ≤ 0.05) differences among leaf residue groupings [Trace (< 0.5 g m-2), Low (0.5 to 2 g m-2), and High (≥ 2 g m-2)] were found for the four leaf gas exchange parameters at leaf temperatures ranging from 25 to 40°C. It would appear that under New Brunswick commercial orchard conditions, the application of Surround favours or has no effect on leaf gas exchange. Key words: Surround, particle film, leaf physiology, photosynthesis, stomatal conductance, intercellular CO2, transpiration


Sign in / Sign up

Export Citation Format

Share Document