scholarly journals Decorative Magnolia Plants: A Comparison of the Content of Their Biologically Active Components Showing Antimicrobial Effects

Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 879
Author(s):  
Petra Lovecká ◽  
Alžběta Svobodová ◽  
Anna Macůrková ◽  
Blanka Vrchotová ◽  
Kateřina Demnerová ◽  
...  

Magnolia plants are used both as food supplements and as cosmetic and medicinal products. The objectives of this work consisted of preparing extracts from leaves and flowers of eight Magnolia plants, and of determining concentrations of magnolol (1 to 100 mg·g−1), honokiol (0.11 to 250 mg·g−1), and obovatol (0.09 to 650 mg·g−1), typical neolignans for the genus Magnolia, in extracts made by using a methanol/water (80/20) mixture. The tested Magnolia plants, over sixty years old, were obtained from Průhonický Park (Prague area, Czech Republic): M. tripetala MTR 1531, M. obovata MOB 1511, and six hybrid plants Magnolia × pruhoniciana, results of a crossbreeding of M. tripetala MTR 1531 with M. obovata MOB 1511. The identification of neolignans was performed by HRMS after a reversed-phase high-performance liquid chromatography (RP-HPLC) fractionation of an extract from M. tripetala MTR 1531. The highest concentrations of neolignans were found in the flowers, most often in their reproductive parts, and obovatol was the most abundant in every tested plant. The highest concentrations of neolignans were detected in parent plants, and lower concentrations in hybrid magnolias. Flower extracts from the parent plants M. tripetala MTR 1531 and M. obovata MOB 1511, flower extracts from the hybrid plants Magnolia × pruhoniciana MPR 0271, MPR 0151, and MPR 1531, and leaf extract from the hybrid plant Magnolia × pruhoniciana MPR 0271 inhibited growth of Staphylococcus aureus.

2018 ◽  
Vol 10 (1) ◽  
pp. 124
Author(s):  
Podili Bhavani ◽  
Seelam Mohan ◽  
Kammela Prasada Rao

Objective: The present work describes the development and subsequent validation of a simple, precise and stability–indicating reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous estimation of diethylcarbamazine citrate, guaiphenesin and chlorpheniramine maleate in tablet dosage forms.Methods: A simple, accurate, precise and robust RP-HPLC method was developed and validated for the estimation of diethylcarbamazine citrate, guaiphenesin and chlorpheniramine maleate. The chromatographic separation of all the three active components was achieved by using luna phenyl-hexyl column (250 mmx4.6 mm, dp=5 µm) with a mobile phase consisting of isocratic method with 0.1% triethylamine as buffer along with orthophosphoric acid adjusted to PH 2.5: acetonitrile (50:50v/v) at a flow rate 1.0 ml/min and ultraviolet detection at 210 nm.Results: The retention time of chlorpheniramine maleate, guaiphenesin and diethylcarbamazine citrate were 2.86, 4.89 and 7.76 min respectively. Validation of the proposed method was carried out according to an international conference on harmonization (ICH) guidelines. The established method was linear in the range of 1-15, 0.6-9, 0.02-0.3 µg/ml and correlation coefficient was 0.999, 0.9991, and 0.993 for diethylcarbamazine citrate, guaiphenesin and chlorpheniramine maleate respectively.Conclusion: The proposed method can be used for the quantitative analysis of diethylcarbamazine citrate, guaiphenesin and chlorpheniramine maleate.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Amol S. Jagdale ◽  
Nilesh S. Pendbhaje ◽  
Rupali V. Nirmal ◽  
Poonam M. Bachhav ◽  
Dayandeo B. Sumbre

Abstract Background A new, sensitive, suitable, clear, accurate, and robust reversed-phase high-performance liquid chromatography (RP-HPLC) method for the determination of brexpiprazole in bulk drug and tablet formulation was developed and validated in this research. Surface methodology was used to optimize the data, with a three-level Box-Behnken design. Methanol concentration in the mobile phase, flow rate, and pH were chosen as the three variables. The separation was performed using an HPLC method with a UV detector and Openlab EZchrom program, as well as a Water spherisorb C18 column (100 mm × 4.6; 5m). Acetonitrile was pumped at a flow rate of 1.0 mL/min with a 10 mM phosphate buffer balanced to a pH of 2.50.05 by diluted OPA (65:35% v/v) and detected at 216 nm. Result The developed RP-HPLC method yielded a suitable retention time for brexpiprazole of 4.22 min, which was optimized using the Design Expert-12 software. The linearity of the established method was verified with a correlation coefficient (r2) of 0.999 over the concentration range of 5.05–75.75 g/mL. For API and formulation, the percent assay was 99.46% and 100.91%, respectively. The percentage RSD for the method’s precision was found to be less than 2.0%. The percentage recoveries were discovered to be between 99.38 and 101.07%. 0.64 μg/mL and 1.95 μg/mL were found to be the LOD and LOQ, respectively. Conclusion The developed and validated RP-HPLC system takes less time and can be used in the industry for routine quality control/analysis of bulk drug and marketed brexpiprazole products. Graphical abstract


1985 ◽  
Vol 65 (2) ◽  
pp. 285-298 ◽  
Author(s):  
J. E. KRUGER ◽  
B. A. MARCHYLO

Chromatographic conditions were optimized and three commercially available columns were evaluated for separation of alcohol-soluble storage proteins of Neepawa wheat using reversed-phase high-performance liquid chromatography (RP-HPLC). Optimal separation was achieved using an extracting solution of 50% 1-propanol, 1% acetic acid, and 4% dithiothreitol and an HPLC elution time of 105 min at a flow rate of 1.0 mL/min. HPLC columns evaluated (SynChropak RP-P, Ultrapore RPSC and Aquapore RP-300) varied in selectivity and resolution. The column providing the greatest versatility was Aquapore RP-300 available in cartridge form. Sodium dodecyl sulfate gradient-gel electrophoresis analysis of protein peaks resolved by RP-HPLC indicated that many of the eluted peaks contained more than one protein species. Chromatographic protein patterns obtained for Neepawa wheat grown at different locations and in different years were qualitatively the same.Key words: Protein, high-performance liquid chromatography, wheat


2010 ◽  
Vol 2 (7) ◽  
pp. 142-147
Author(s):  
O. Amos Abolaji ◽  
M. Ubana Eteng ◽  
E. Patrick Ebong ◽  
Andi Brisibe ◽  
Ahmed Shakil ◽  
...  

2008 ◽  
Vol 5 (5) ◽  
pp. 332 ◽  
Author(s):  
Yijun Yu ◽  
Weihua Yang ◽  
Zishen Gao ◽  
Michael H. W. Lam ◽  
Xiaohua Liu ◽  
...  

Environmental context. Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental contaminants and numerous studies have demonstrated a marked increase in the levels of PBDEs in human biological tissues and fluids, especially breast milk. How PBDEs are transported through the environment, taken up by biota, transported across membranes, and metabolised depends strongly on such fundamental properties as lipophilicity (log KOW). However, very little data on log KOW exist for PBDEs. In the present paper, the authors determine PBDE metabolites’ log KOW using reversed-phase high performance liquid chromatography, as recommended by the Organisation for Economic Co-operation and Development and US Environmental Protection Agency, along with quantitative structure–property relationships. Abstract. n-Octanol–water partitioning coefficient (log KOW) values of selected hydroxylated and methoxylated polybrominated diphenyl ether metabolites were measured for the first time by reversed-phase high performance liquid chromatography (RP-HPLC) using a C18 stationary phase with a water/methanol mixture as a mobile phase. The retention parameters, log kw (extrapolated retention indices) and k′ (gradient retention indices) were calibrated to log KOW by a set of calibration standards. For the PBDE metabolites investigated, extrapolated retention indices from isocratic elution seem to be more reliable and their RP-HPLC-derived log KOW values were found to range from 4.63 to 7.67. Some commonly available software, including ClogP, KowWin, AclogP, MlogP, AlogP, MilogP, and XlogP, was used to estimate the log KOW values of the analytes. Significant correlations were obtained between the RP-HPLC-derived log KOW and the software-computed log KOW, with squared correlation coefficients (R2) ranging from 0.793 to 0.922, but the difference between them was also significant. Then a quantitative structure–property relationship model based on topological descriptors was established and showed good reliability and predictive power for the estimation of RP-HPLC-derived log KOW values of PBDE metabolites. It was applied to estimate the log KOW values of some PBDE metabolites that are commercially available or have appeared in the literature. Lastly, factor analysis was carried out using the theoretical linear salvation/free-energy relationships, which indicated the average polarisability (α) and the most negative atomic partial Mulliken charge in the molecule (q–) were the most important parameters affecting their partition between n-octanol and water, supporting the factorisation of log KOW in bulk and electronic terms.


INDIAN DRUGS ◽  
2021 ◽  
Vol 57 (10) ◽  
pp. 47-57

An isocratic Reversed-Phase High Performance Liquid Chromatography method has been developed for rapid and simultaneous separation and estimation of two antibiotics, namely, nitazoxanide and ofloxacin, in human plasma. Separation was carried out on Altima C8 (150 x 4.6 mm, 5µ) column using a mobile phase of 0.1% ortho phosphoric acid: acetonitrile (50:50, V/V) at 260 nm. The retention time of nitazoxanide and ofloxacin was noted to be 4.850 and 7.949 min, respectively. The average % recovery for nitazoxanide and ofloxacin were 98.012 % and 94.176 %, respectively and reproducibility was found to be satisfactory. The linearity was investigated in the concentration range of 0.02-2 µg/ml (r2=0.9996) for nitazoxanide and 0.008-0.8 µg/ml (r2=0.9998) for ofloxacin. The lower limits of quantification were 0.0196 µg/ml and 0.0079 µg/ml for nitazoxanide and ofloxacin, respectively, which reach the level of both drugs possibly found in human plasma. The proposed method can be applied for etermination of nitazoxanide and ofloxacin from dosage forms during pharmacokinetic study.


Author(s):  
Muhammad Fawad Rasool ◽  
Umbreen Fatima Qureshi ◽  
Nazar Muhammad Ranjha ◽  
Imran Imran ◽  
Mouqadus Un Nisa ◽  
...  

AbstractTh accurate rapid, simple and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of captopril (CAP). Chromatographic separation was accomplished using prepacked ODSI C18 column (250 mm × 4.6 mm with 5 μm particle size) in isocratic mode, with mobile phase consisting of water: acetonitrile (60:40 v/v), pH adjusted to 2.5 by using 85% orthophosphoric acid at a flow rate of 1 mL/min and UV detection was performed at 203 nm. RP-HPLC method used for the analysis of CAP in mobile phase and rabbit plasma was established and validated as per ICH-guidelines. It was carried out on a well-defined chromatographic peak of CAP was established with a retention time of 4.9 min and tailing factor of 1.871. The liquid–liquid extraction method was used for extraction of CAP from the plasma. Excellent linearity (R2 = 0.999) was shown over range 3.125–100 µg/mL with mean percentage recoveries ranges from 97 to 100.6%. Parameters of precision and accuracy of the developed method meet the established criteria. Intra and inter-day precision (% relative standard deviation) study was also performed which was less than 2% which indicate good reproducibility of the method. The limit of detection (LOD) and quantification for the CAP in plasma were 3.10 and 9.13 ng/mL respectively. The method was suitably validated and successfully applied to the determination of CAP in rabbit plasma samples.


Sign in / Sign up

Export Citation Format

Share Document